10.24423/engtrans.705.2016
A Numerical Investigation of the Influence of the Material Microstructure on the Failure Mode of Metal Ceramic Composites
References
Kaczmar J.W., Pietrzak K., Włosiński, W., The production and application of metal matrix composite materials, Journal of Materials Processing Technology, 106(1–3): 58–67, 2000, doi: 10.1016/S0924-0136(00)00639-7.
Evans A., San Marchi C., Mortensen A., Metal Matrix Composites in Industry: An Introduction and a Survey, Springer Science, New York, 2003.
Fan S., Zhang L., Xu Y., Cheng L., Tian G., Ke S., Xu F., Liu H., Microstructure and tribological properties of advanced carbon/silicon carbide aircraft brake materials, Composites Science and Technology, 68(14): 3002–3009, 2008, doi: 10.1016/j.compscitech.2008.06.013.
Qu X.-H., Zhang L., Wu M., Ren S.-B., Review of metal matrix composites with high thermal conductivity for thermal management application, Progress in Natural Science: Materials International, 21(3): 189–197, 2011, doi: 10.1016/S1002-0071(12)60029-X.
Macke A.J., Schultz B.F., Rohatgi P.K., Metal matrix composites offer the automotive industry an opportunity to reduce vehicle weight, improve performance, Advanced Materials & Processes, 170(3): 19–23, 2012.
Babout L., Maire E., Buffière J.Y., Fougères R., Characterization by X-ray computed tomography of decohesion, porosity growth and coalescence in model metal matrix composites, Acta Materialia, 49(11): 2055–2063, 2001, doi: 10.1016/S1359-6454(01)00104-5.
Gurson A.L., Continuum theory of ductile rupture by void nucleation and growth: Part I – Yield criteria and flow rules for porous ductile media, ASME Journal of Engineering Materials and Technology, 99(1): 2–15, 1977, doi: 10.1115/1.3443401.
Tvergaard V., On localization in ductile materials containing spherical voids, International Journal of Fracture, 18(4): 237–252, 1982, doi:10.1007/BF00015686.
Needleman A., Tvergaard V., Analysis of ductile rupture in notched bars, Journal of the Mechanics and Physics of Solids, 32(6): 461–490, 1984, doi: 10.1016/0022-5096(84)90031-0.
Lievers W.B., Pilkey A.K., Lloyd D.J., Using incremental forming to calibrate a void nucleation model for automotive aluminum sheet alloys, Acta Materialia, 52(10): 3001–3007, 2004, doi: 10.1016/j.actamat.2004.03.002.
He M., Li F., Wang, Z., Forming limit stress diagram prediction of aluminum alloy 5052 based on GTN model parameters determined by in situ tensile test, Chinese Journal of Aeronautics, 24(3): 378–386, 2011, doi: 0.1016/S1000-9361(11)60045-9.
Abaqus/Explicit, release 6.13-1, Dassault Systems Simulia Corp, Providence, RI, USA, 2013.
Michel J.C., Moulinec H., Suquet P., Effective properties of composite materials with periodic microstructure: a computational approach, Computer Methods in Applied Mechanics and Engineering, 172: 109–143, 1999.
DOI: 10.24423/engtrans.705.2016