Engineering Transactions, 65, 1, pp. 83–88, 2017
10.24423/engtrans.702.2017

Numerical Elastoplastic Analysis of Trabeculae in Lumbar Vertebral Body

Algirdas MAKNICKAS
Vilnius Gediminas Technical University
Lithuania

Vidmantas ALEKNA
Vilnius University
Lithuania

Oleg ARDATOV
Vilnius Gediminas Technical University
Lithuania

Natalya KIZILOVA
1) Warsaw University of Technology 2) Vilnius Gediminas Technical University
Lithuania

Marija TAMULAITIENĖ
Vilnius University
Lithuania

Rimantas KAČIANAUSKAS
Vilnius Gediminas Technical University
Lithuania

This paper presents a numerical modelling of lumbar vertebrae L1 by employing the finite element method. The three-dimensional model of vertebral body is derived by processing CT data and DICOM format files. The model includes cortical shell, trabecular bone and posterior elements. The formation of trabecular structure was performed by script-controlled ellipsoidal cut-outs. In order to define the nonlinear relationship between the stress and the strain, the Ramberg-Osgood equation was applied. Therefore, the von Mises stress was assumed to characterise the stressed state of bone tissue due to 1 and 7 MPa compression load. According to specific difficulties for “in vitro” and “in vivo” investigation methods, this “in silico” technique may provide new insight for further understanding of the trabecular bone behaviour in terms of plastic deformation.
Keywords: lumbar vertebra; finite element method; osteoporosis; trabeculae
Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

López E., Ibarz E., Herrera A., Mateo J., Lobo-Escolar A., Puértolas S., Gracia L., Probability of osteoporotic vertebral fractures assessment based on DXA measurements and finite element simulation, Advances in Bioscience and Biotechnology, 5(06): 527–545, 2014, doi: 10.4236/abb.2014.56063.

Mazlan M. H., Todo M., Takano H., Yonezawa I., Finite element analysis of osteoporotic vertebrae with first lumbar (L1) vertebral compression fracture, International Journal of Applied Physics and Mathematics, 4(4): 267–274, 2014, doi: 10.7763/IJAPM.2014.V4.297.

Łodygowski T., Kąkol W., Wierszycki M., Ogurkowska B.M., Three-dimensional nonlinear finite element model of the human lumbar spine segment, Acta of Bioengineering and Biomechanics, 7: 17–28, 2005.

Su J., Cao L., Li Z., Yu B., Zhang C., Li M., Three-dimensional finite element analysis of lumbar vertebra loaded by static stress and its biomechanical significance, Chinese Journal of Traumatology, 12(3): 153–156, 2009, doi: 10.3760/cma.j.issn.1008-1275.2009.03.006.

Jones A.C., Wilcox R.K., Finite element analysis of the spine: towards a framework of verification, validation and sensitivity analysis, Medical Engineering and Physics, 30(10): 1287–1304, 2008, doi: 10.1016/j.medengphy.2008.09.006.

Crawford R.P., Cann C.E., Keaveny T.M., Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography, Bone, 33(4): 744–750, 2003, doi: 10.1016/S8756-3282(03)00210-2.

Maquer G., Schwiedrzik J., Huber G., Morlock M.M., Zysset P.K., Compressive strength of elderly vertebrae is reduced by disc degeneration and additional flexion, Journal of Mechanical Behavior of Biomedical Materials, 42: 54–66, 2015, doi: 10.1016/j.jmbbm.2014.10.016.

Provatidis C., Vossou C., Koukoulis I., Balanika A., Baltas C., Lyritis G., A pilot finite element study of an osteoporotic L1-vertebra compared to one with normal T-score, Computer Methods in Biomechanics and Biomedical Engineering, 13(2): 185–195, 2010, doi: 10.1080/10255840903099703.

McDonald K., Little J., Pearcy M., Adam C., Development of a multi-scale finite element model of the osteoporotic lumbar vertebral body for the investigation of apparent level vertebra mechanics and micro-level trabecular mechanics, Medical Engineering & Physics, 32(6): 653–661, 2010, DOI: 10.1016/j.medengphy.2010.04.006.

Garo A., Arnoux P.J., Wagnac E., Aubin C.E., Calibration of the mechanical properties in a finite element model of a lumbar vertebra under dynamic compression up to failure, Medical & Biological Engineering & Computing, 49(12): 1371–1379, 2011, doi: 10.1007/s11517-011-0826-z.

El-Rich M., Arnoux P.J., Wagnac E., Brunet C., Aubin C.E., Finite element investigation of the loading rate effect on the spinal load-sharing changes under impact conditions, Journal of Biomechanics, 42(9): 1252–1262, 2009, doi: 10.1016/j.jbiomech.2009.03.036.

Mao-Hong Y., Advances in strength theories for materials under complex stress state in the 20th Century, Applied Mechanics Reviews, 55(3): 169–218, 2002, doi: 10.1115/1.1472455.

Timothy H.K., Brandeau J.F., Mathematical modeling of the stress strain-strain rate behavior of bone using the Ramberg-Osgood equation, Journal of Biomechanics, 16(6): 445–450, 1983, doi: 10.1016/0021-9290(83)90076-3.

Kim Y.H., Wu M., Kim K., Stress analysis of osteoporotic lumbar vertebra using finite element model with micro-scaled beam-shell trabecular-cortical structure, Journal of Applied Mathematics, 2013: 115–118, 2013, doi: 10.1155/2013/285165.




DOI: 10.24423/engtrans.702.2017