Engineering Transactions, 49, 1, pp. 65–87, 2001
10.24423/engtrans.574.2001

A Contribution to the Modelling of Dynamic Problems for Periodic Plates

J. Jędrysiak
Lodz University of Technology
Poland

A certain problem of vibrations analysis of thin periodic plates is presented in this paper. The applied model describes the effect of the periodicity cell size on the overall plate behaviour. In the modelling procedure we use a concept of functions which describe oscillations inside the periodicity cell and have to be properly chosen approximations of solutions to eigenvalue problems for natural vibrations of a separated periodicity cell with periodic boundary conditions. In this paper we will show that for certain cases of that cell, an approximate form of those functions can be used.
Keywords: periodic plate; length-scale effect; mode-shape function
Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

N.S. BAKHVALOV, G.P. PANASENKO, Averaging of processes in periodic media [in Russian], Nauka, Moscow 1984.

E. BARON, C. WOŹNIAK, On the micro-dynamics of composite plates, Arch. Appl. Mech., 66, 126–133, 1995.

D. CAILLERIE, Thin elastic and periodic plates, Math. Meth. in the Appl. Sci., 6, 159–191, 1984.

I. CIELECKA, On continuum modelling the dynamic behaviour of certain composite lattice–type structures, J. Theor. Appl. Mech., 33, 351–360, 1995.

G. DUVAUT, A.M. METELLUS, Homogéneisation d'une plaque mince en flexion des structure périodigue et symmetrique [in French], C.R. Acad. Sci., 283(A), 947–950, Paris 1976.

J. JĘDRYSIAK, On dynamics of thin plates with a periodic structure, Engng. Trans., 46, 73–87, 1998.

J. JĘDRYSIAK, Free vibrations of thin periodic plates, Engng. Trans., 46, 89–114, 1998.

J. JĘDRYSIAK, Dynamics of thin periodic plates resting on a periodically inhomogeneous Winkler foundation, Arch. Appl. Mech., 69, 345–356, 1999.

J. JĘDRYSIAK, C. WOŹNIAK, On the elastodynamics of thin microperiodic plates, J. Theor. Appl. Mech., 33, 337–349, 1995.

R.V. KOHN, M. VOGELIUS, A new model for thin plates with rapidly varying thickness, Int. J. Solids Structures, 20, 333–350, 1984.

S. KONIECZNY, M. WOŹNIAK, On the wave propagation in fibre–reinforced composites, J. Theor. Appl. Mech., 33, 375–384, 1995.

T. LEWIŃSKI, Effective models of composite periodic plates — I. Asymptotic solution, Int. J. Solids Struct., 27, 1155–1172, 1991.

T. LEWIŃSKI, Homogenizing stiffnesses of plates with periodic structure, Int. J. Solids Structures, 21, 309–326, 1992.

T. LEWIŃSKI, S. KUCHARSKI, A model with length scales for composites with periodic structure. Part I, Comp. Mechanics, 9, 249–265, 1992.

A. MAEWAL, Construction of models of dispersive elastodynamic behaviour of periodic composites, a computational approach, Comp. Meth. Appl. Mech. Engng., 57, 191–205, 1986.

S. J. MATYSIAK, W. NAGÓRKO, On the wave propagation in periodically laminated composites, Bull. Polon. Acad. Sci., Tech. Sci., 43, 1–12, 1995.

K. MAZUR-ŚNIADY, Macro-dynamics of micro-periodic elastic beams, J. Theor. Appl. Mech., 31, 781–793, 1993.

B. MICHALAK, C. WOŹNIAK, M. WOŹNIAK, The dynamic modelling of elastic wavy–plates, Arch. Appl. Mech., 66, 177–186, 1995.

M. WAGROWSKA, C. WOŹNIAK, Macro-modelling of dynamic problems for visco-elastic composite materials, Int. J. Engng. Sci., 34, 923–932, 1996.

E. WIERZBICKI, Nonlinear macro-micro dynamics of laminated structures, J. Theor. Appl. Mech., 33, 291–307, 1995.

C. WOŹNIAK, Internal variables in dynamics of composite solids with periodic microstructure, Arch. Mech., 49, 421–441, 1997.

C. WOŹNIAK, M. WOŹNIAK, A generalization of the internal variable model for dynamics of solids with periodic microstructure, J. Theor. Appl. Mech., 35, 109–122, 1997.

J. JĘDRYSIAK, On vibrations of thin plates with one-dimensional periodic structure, Int. J. of Engng. Sci., 38, 18, 2023–2043, 2000.




DOI: 10.24423/engtrans.574.2001