10.24423/engtrans.346.2016
Analysis of the composite material behaviour subjected to dynamic bending using the Hopkinson bar
References
Massaq A., Rusinek A., Klósak M., New experimental technique for dynamic bending of composite materials, Engineering Transactions, 62(3): 269–289, 2014.
Charpy G., Note on test metal bending shock notched bars, Memory & Reports from the Society of Civil Engineers of France, 1901.
Fazal A., Fancey K.S., Viscoelastically prestressed polymeric matrix composites – effects of test span and fibre volume fraction on Charpy impact characteristics, Composites Part B: Engineering, 44(1): 472–479, 2013.
Hopkinson B., A method of measuring the pressure produced in the detonation of explosives or by impact of bullet, Philosophical Transactions A, 213, pp. 437–456, 1914.
Massaq A., Rusinek A., Klósak M., Method for determination of the dynamic elastic modulus for composite materials, Engineering Transactions, 61(4): 301–315, 2013.
Klepaczko J.R., An experimental technique for shear testing at high and very high strain rates. The case of mild steel, International Journal of Impact Engineering, 15(1): 25–39, 1994.
Klepaczko J.R., Matysiak S.J., Analysis of longitudinal impact on semi-infinite circular bars and tubes, Appendix N°2, The Final Technical Report Contract DAJA 45-90-C-0052, Metz, October, 1992.
Williams J.G., Adams G.C., The analysis of instrumented impact tests using a mass-spring model, International Journal of Fracture, 33(3): 209–222, 1987.
Williams J.G., The analysis of dynamic fracture using lumped mass spring models, International Journal of Fracture, 33(1): 47–59, 1987.
Williams J.G., Tropsa V., MacGillivray H., Rager A., Dynamic correction factors for K and G in high rate, SENB, impact tests, International Journal of Fracture, 107(3): 259–278, 2001.
Kobayashi T., Analysis of impact properties of 4533 steel for nuclear reactor pressure vessel by instrumented impact test, Engineering Fracture Mechanics, 19(1): 49–65, 1984.
Effendi R., Analysis of compression degradation mechanisms of unidirectional composite organic carbon-fiber matrix and associated modeling, PhD thesis, ENSAM, 1993.
Golovoy A., Influence of velocity on the impact strength of glass reinforced polypropylene, Polymer Composites, 7(6): 405–412, 1986.
Yokoyama T., Kishida K., A novel impact three-point bend test method for determining dynamic fracture-initiation toughness, Experimental Mechanics, 29(2): 188–194, 1989.
Hanus J.-L., Magnain B., Durand B., Rodriguez J.A., Bailly P., Processing dynamic split Hopkinson three-point bending test with normalized specimen of quasi-brittle material, Mechanics & Industry, 13(6): 381–393, 2012.
Jiang F., Vecchio K.S., Hopkinson bar loaded fracture experimental technique: a critical review of dynamic fracture toughness tests, Applied Mechanics Reviews, 62(6): 060802-1–060802-39, 2009.
Delvare F., Hanus J.-L., Bailly P., A non-equilibrium approach to processing Hopkinson bar bending test data: application to quasi-brittle materials, International Journal of Impact Engineering, 37(12): 1170–1179, 2010.
Govender R.A., Langdon G.S., Nurick G.N., Cloete T.J., Impact delamination testing of fibre reinforced polymers using Hopkinson pressure bars, Engineering Fracture Mechanics, 101: 80–90, 2013.
Nazarenko E., Fracture behavior of a composite ceramic fiber and ceramic matrix under static and dynamic stresses, Thesis of the Ecole Centrale de Paris, 1992.
Pignon A., Mathieu G., Richomme S., Margot J.M., Delvare F., Modified split Hopkinson pressure bars for dynamic bending and shear tests, International Conference on Mechanical and physical behavior of materials under dynamic loading, No 8, Dijon, France, 134, p. 1347, 2006.
DOI: 10.24423/engtrans.346.2016