10.24423/engtrans.3435.2025
A Comprehensive Review on the Applications of Nanometal Additives in Fuels for Internal Combustion Engines
Nanometal additives have emerged as promising candidates for enhancing the performance and efficiency of internal combustion (IC) engines. The present review provides an overview of their applications and benefits in IC engines. These additives, characterized by their nanoscale size and unique properties, offer advantages such as improved combustion kinetics, enhanced catalytic activity, and reduced emissions. By leveraging their high surface-to-volume ratios and tailored surface chemistry, nanometal additives facilitate more efficient fuel combustion, leading to higher engine efficiency and lower pollutant emissions. Also, this review highlights the importance of nanometal additives in addressing challenges related to fuel quality, combustion efficiency, and environmental impact in IC engines, paving the way for cleaner and more efficient engine technologies.
References
Kalghatgi G., Is it really the end of internal combustion engines and petroleum in transport?, Applied Energy, 225: 965–974, 2018, https://doi.org/10.1016/j.apenergy.2018.05.076.
Kirkpatrick A.T., Internal Combustion Engines: Applied Thermosciences, John Wiley & Sons, New Jersey 2020.
Jessin J.C., Maheswaran P., Syed Abuthahir M., Vijayan K., Design and analysis of an internal combustion engine piston head to increase the torque on crankshaft, International Journal of Innovative Research in Science, Engineering and Technology, 55: 7898–7904, 2016, https://doi.org/10.15680/IJIRSET.2016.0505220.
Abdul-Manan A.F.N., Uncertainty and differences in GHG emissions between electric and conventional gasoline vehicles with implications for transport policy making, Energy Policy, 87: 1–7, 2015, https://doi.org/10.1016/j.enpol.2015.08.029.
Faizal M., Feng S.Y., Zureel M.E., Sinidol B.E., Wong D., Jian G.K., A review on challenges and opportunities of electric vehicles (EVS), Journal of Mechanical Engineering Research and Developments, 42(4): 130–137, 2019, https://doi.org/10.26480/jmerd.04.2019.127.134.
Sierzchula W., Bakker S., Maat K., Van Wee B., The competitive environment of electric vehicles: An analysis of prototype and production models, Environmental Innovation and Societal Transitions, 2: 49–65, 2012, https://doi.org/10.1016/j.eist.2012.01.004.
Wolfram P., Lutsey N., Electric vehicles: Literature review of technology costs and carbon emissions, International Council on Clean Transportation, Washington, DC, 2016, https:://theicct.org/wp-content/uploads/2021/06/ICCT_LitRvw_EV-tech-costs_201607.pdf (accessed September 4, 2024).
Hallegatte S., Shah A., Brown C., Lempert R., Gill S., Investment decision making under deep uncertainty – Application to climate change, World Bank Policy Research Working Paper, 6193, 2012.
Pollet B.G., Staffell I., Shang J.L., Current status of hybrid, battery and fuel cell electric vehicles: From electrochemistry to market prospects, Electrochimica Acta, 84: 235–249, 2012, https://doi.org/10.1016/j.electacta.2012.03.172.
Awad O.I., Mamat R., Ibrahim T.K., Hammid A.T., Yusri I.M., Hamidi M.A., Yusop A.F., Overview of the oxygenated fuels in spark ignition engine: Environmental and performance, Renewable and Sustainable Energy Reviews, 91: 394–408, 2018, https://doi.org/10.1016/j.rser.2018.03.107.
Felix A.V., Combustion of bio-fluids as an alternative energy source: prospects and challenges, International Journal of Social Science and Humanities Research, 8(2): 150–178, 2020 (available at: www.researchpublish.com).
Das A.K., Sahu S.K., Panda A.K., Current status and prospects of alternate liquid transportation fuels in compression ignition engines: A critical review, Renewable and Sustainable Energy Reviews, 161: 112358, 2022, https://doi.org/10.1016/j.rser.2022.112358.
Ahmad J., Octane Requirement Increase Arising from the Use of Lead-Free Fuel, Doctoral dissertation, Aston University,1989.
Westbrook C.K., Biofuels combustion, Annual Review of Physical Chemistry, 64: 201–219, 2013, https://doi.org/10.1146/annurev-physchem-040412-110009.
Tyagi U., Aslam M., Sarma A.K., Green anti-knock agents for enhancement of gasoline performance, [in:] Green Gasoline: A Green Spark Transportation Fuel, Aslam M., Makteda, S., Sarma A.K. [Eds.], pp. 238–259, Royal Society of Chemistry, Cambridge, UK, 2023, https://doi.org/10.1039/BK9781837670079-00238.
Aljaberi H.A., Hairuddin A.A., Aziz N.A., The use of different types of piston in an HCCI engine: A review, International Journal of Automotive and Mechanical Engineering, 14(2): 4348–4268, 2017, https://doi.org/10.15282/ijame.14.2.2017.17.0346.
Verma S., Sharma B., Ahmad J., Dwivedi G., Nandan G., Impact assessment of ethanol as fuel for engine operation, Materials Today: Proceedings, 52(2, Part1): 6115–6120, 2018, https://doi.org/10.1016/j.matpr.2017.12.217.
Niculescu R., Clenci A., Iorga-Siman V., Review on the use of diesel–biodiesel–alcohol blends in compression ignition engines, Energies, 12(7): 1194, 2019, https://doi.org/10.3390/en12071194.
Yun Y., Alcohol fuels: current status and future direction, [in:] Alcohol Fuels-Current Technologies and Future Prospect, Yun Y. [Ed.], IntechOpen, Rijeka 2020, https://doi.org/10.5772/intechopen.89788.
Awad O.I., Mamat R., Ali O.M., Sidik N.A.C., Yusaf T., Kadirgama K., Kettner M., Alcohol and ether as alternative fuels in spark ignition engine: A review, Renewable and Sustainable Energy Reviews, 82(Part3): 2586–2605, 2018, https://doi.org/10.1016/j.rser.2017.09.074.
Kumar M., The performance analysis of an SI engine with various blends of ethanol-gasoline, TD-317, 2007.
Hill J., Nelson E., Tilman D., Polasky S., Tiffany D., Environmental economic and energetic costs and benefits of biodiesel and ethanol biofuels, Proceedings of the National Academy of Sciences, 103(30): 11206–11210, 2006, https://doi.org/10.1073/pnas.0604600103.
Balat M., Potential alternatives to edible oils for biodiesel production – A review of current work, Energy Conversion and Management, 52(2): 1479–1492, 2011, https://doi.org/10.1016/j.enconman.2010.10.011.
Luque R., Lovett J.C., Datta B., Clancy J., Campelo J.M., Romero A.A., Biodiesel as feasible petrol fuel replacement: A multidisciplinary overview, Energy & Environmental Science, 3(11): 1706–1721, 2010, https://doi.org/10.1039/C0EE00085J.
Hasan M.M., Rahman M.M., Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review, Renewable and Sustainable Energy Reviews, 74: 938–948, 2017, https://doi.org/10.1016/j.rser.2017.03.045.
Mishra V.K., Goswami R., A review of production properties and advantages of biodiesel, Biofuels, 9(2): 273–289, 2018, https://doi.org/10.1080/17597269.2017.1336350.
Hutchings G., Davidson M., Atkins P., Collier P., Jackson N., Morton A., Muskett M., Rosseinsky M., Styring P., Thornley P., Williams C., Sustainable synthetic carbon-based fuels for transport, Policy Briefing, The Royal Society, London 2019, http://royalsociety.org/synthetic-fuels.
Demirbas A., Biofuels securing the planet’s future energy needs, Energy Conversion and Management, 50(9): 2239–2249, 2009, https://doi.org/10.1016/j.enconman.2009.05.010.
Xing H., Stuart C., Spence S., Chen H., Alternative fuel options for low-carbon maritime transportation: Pathways to 2050, Journal of Cleaner Production, 297: 126651, 2021, https://doi.org/10.1016/j.jclepro.2021.126651.
Grope N., Schröder O., Krahl J., Müller-Langer F., Schröder J., Mattheß E., Survey on Advanced Fuels for Advanced Engines, Task 52: Fuels for Efficiency, Project Report, Advanced Motor Fuels, 2018, https:://www.iea-amf.org/app/webroot/files/file/Annex%20Reports/AMF_Annex_52.pdf (acessed September 6, 2024).
Abdellatief T.M., Ershov M.A., Savelenko V.D., Kapustin VM., Makhova U.A., Klimov N.A., Olabi A.G., Advanced progress and prospects for producing high-octane gasoline fuel toward market development: State-of-the-art and outlook, Energy & Fuels, 37(23): 18266–18290, 2023, https://doi.org/10.1021/acs.energyfuels.3c02541.
Gibbs L., Schütze A., Motor gasoline, [in:] Fuels and Lubricants Handbook: Technology Properties Performance and Testing, Totten G.E, Shah R.J., Forester D.R. [Eds.], pp. 61–88, ASTM International, West Conshohocken, PA, 2003, https://doi.org/10.1520/MNL3720170009.
Badia J.H., Ramírez E., Bringué R., Cunill F., Delgado J., New octane booster molecules for modern gasoline composition, Energy & Fuels, 35(14): 10949–10997, 2021, https://doi.org/10.1021/acs.energyfuels.1c00912.
Di Girolamo M., Brianti M., Marchionna M., Octane enhancers, [in:] Handbook of Fuels: Energy Sources for Transportation, Elvers B., Schütze A. [Eds.], pp. 403–430, Wiley Online Books, 2021, https://doi.org/10.1002/9783527813490.ch14.
Hoekman S.K., Leland A., Literature review on the effects of organometallic fuel additives in gasoline and diesel fuels, SAE International Journal of Fuels and Lubricants, 11(1): 105–124, 2018, https://doi.org/10.4271/04-11-01-0005.
Yanowitz J., Christensen E., McCormick R.L., Utilization of renewable oxygenates as gasoline blending components, National Renewable Energy Lab. (NREL), Golden, CO, 2011, https://doi.org/10.2172/1024518.
Ribeiro N.M., Pinto A.C., Quintella C.M., Da Rocha G.O., Teixeira L.S., Guarieiro L.L., de Andrade J.B., The role of additives for diesel and diesel blended ethanol or biodiesel fuels: A review, Energy & Fuels, 21(4): 2433–2445, 2007, https://doi.org/10.1021/ef070060r.
Agarwal A.K., Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines, Progress in energy and combustion science, 33(3): 233–271, 2007, https://doi.org/ 10.1016/j.pecs.2006.08.003.
Yee K.F., Mohamed A.R., Tan S.H., A review on the evolution of ethyl tert-butyl ether (ETBE) and its future prospects, Renewable and Sustainable Energy Reviews, 22: 604–620, 2013, https://doi.org/10.1016/j.rser.2013.02.016.
Hu J., Du Z., Li C., Min E., Study on the lubrication properties of biodiesel as fuel lubricity enhancers, Fuel, 84(12–13): 1601–1606, 2005, https://doi.org/10.1016/j.fuel.2005.02.009.
Groysman A., Fuel additives, [in:] Corrosion in Systems for Storage and Transportation of Petroleum Products and Biofuels: Identification Monitoring and Solutions, pp. 23–41, Springer Netherlands, Dordrecht, 2014, https://doi.org/10.1007/978-94-007-7884-9_2.
Demirbas A., Balubaid M.A., Basahel A.M., Ahmad W., Sheikh M.H., Octane rating of gasoline and octane booster additives, Petroleum Science and Technology, 33(11): 1190–1197, 2015, https://doi.org/10.1080/10916466.2015.1050506.
Wang W., Wang W., Zhu Z., Hu X., Qiao F., Yang J., Liu D., Chen P., Zhang Q., Quantitation of polyetheramines as the active components of detergent additives in gasoline by the ninhydrin reaction, Fuel, 338: 127275, 2023, https://doi.org/10.1016/j.fuel.2022.127275.
Suppes G.J., Chen Z., Rui Y., Mason M., Heppert J.A., Synthesis and cetane improver performance of fatty acid glycol nitrates, Fuel, 78(1): 73–81, 1999, https://doi.org/10.1016/S0016-2361(98)00126-4.
Hazrat M.A., Rasul M.G., Khan M.M.K., Lubricity improvement of the ultra-low sulfur diesel fuel with the biodiesel, Energy Procedia, 75: 111–117, 2015, https://doi.org/10.1016/j.egypro.2015.07.619.
Peale L.F., Messina J., Ackerman B., Sasin R., Swern D., Evaluation of long-chain phosphorus compounds as lubricity additives, ASLE Transactions, 3(1): 48–54, 1960, https://doi.org/10.1080/05698196008972386.
Fenard Y., Song H., Dauphin R., Vanhove G., An engine-relevant kinetic investigation into the anti-knock effect of organometallics through the example of ferrocene, Proceedings of the Combustion Institute, 37(1): 547–554, 2019, https://doi.org/10.1016/j.proci.2018.06.135.
Geller D.P., Goodrum J.W., Effects of specific fatty acid methyl esters on diesel fuel lubricity, Fuel, 83(17–18): 2351–2356, 2004, https://doi.org/10.1016/j.fuel.2004.06.004.
Sidibé S.S., Blin J., Vaitilingom G., Azoumah Y., Use of crude filtered vegetable oil as a fuel in diesel engines state of the art: Literature review, Renewable and Sustainable Energy Reviews, 14(9): 2748–2759, 2010, https://doi.org/10.1016/j.rser.2010.06.018.
Franco Z., Nguyen Q.D., Flow properties of vegetable oil–diesel fuel blends, Fuel, 90(2): 838–843, 2011,
Bautista L.F., Vargas C., González N., Molina M.C., Simarro R., Salmerón A., Murillo Y., Assessment of biocides and ultrasound treatment to avoid bacterial growth in diesel fuel, Fuel Processing Technology, 152: 56–63, 2016, https://doi.org/10.1016/j.fuproc.2016.06.002.
Ying G.G., Williams B., Kookana R., Environmental fate of alkylphenols and alkylphenol ethoxylates – A review, Environment International, 28(3): 215–226, 2002, https://doi.org/10.1016/S0160-4120(02)00017-X.
Khan S., Dewang Y., Raghuwanshi J., Shrivastava A., Sharma V., Nanoparticles as fuel additive for improving performance and reducing exhaust emissions of internal combustion engines, International Journal of Environmental Analytical Chemistry, 102(2): 319–341, 2022, https://doi.org/10.1080/03067319.2020.1722810.
Zhang X., Chi N.T.L., Xia C., Khalifa A.S., Brindhadevi K., Role of soluble nano-catalyst and blends for improved combustion performance and reduced greenhouse gas emissions in internal combustion engines, Fuel, 312: 122826, 2022, https://doi.org/10.1016/j.fuel.2021.122826.
Mei D., Zuo L., Adu-Mensah D., Li X., Yuan, Y., Combustion characteristics and emissions of a common rail diesel engine using nanoparticle-diesel blends with carbon nanotube and molybdenum trioxide, Applied Thermal Engineering, 162: 114238, 2019, https://doi.org/10.1016/j.applthermaleng.2019.114238.
Ooi J.B., Kau C.C., Manoharan D.N., Wang X., Tran M.V., Hung Y.M., Effects of multi-walled carbon nanotubes on the combustion, performance, and emission characteristics of a single-cylinder diesel engine fueled with palm-oil biodiesel-diesel blend, Energy, 281: 128350, 2023, https://doi.org/10.1016/j.energy.2023.128350.
Kumar S., Nehra M., Kedia D., Dilbaghi N., Tankeshwar K., Kim K.H., Carbon nanotubes: A potential material for energy conversion and storage, Progress in energy and combustion science, 64: 219–253, 2018, https://doi.org/10.1016/j.pecs.2017.10.005.
Markov V., Kamaltdinov V., Zherdev A., Furman V., Sa B., Neverov V., Study on the possibility of improving the environmental performance of diesel engine using carbon nanotubes as a petroleum diesel fuel additive, Energies, 12(22): 4345, 2019, https://doi.org/10.3390/en12224345.
El-Seesy A.I., Hassan H., Investigation of the effect of adding graphene oxide, graphene nanoplatelet, and multiwalled carbon nanotube additives with n-butanol-Jatropha methyl ester on a diesel engine performance, Renewable Energy, 132: 558–574, 2019, https://doi.org/10.1016/j.renene.2018.08.026.
Ooi J.B., Ismail H.M., Tan B.T., Wang X., Effects of graphite oxide and single-walled carbon nanotubes as diesel additives on the performance, combustion, and emission characteristics of a light-duty diesel engine, Energy, 161: 70–80, 2018, https://doi.org/10.1016/j.energy.2018.07.062.
Beni A.A., Jabbari H., Nanomaterials for environmental applications, Results in Engineering, 15: 100467, 2022, https://doi.org/10.1016/j.rineng.2022.100467.
Xu H., Hong Q., Li J., Liao Y., Huang W., Qu Z., Yan N., Heterogeneous reaction mechanisms and functional materials for elemental mercury removal from industrial flue gas, ACS ES&T Engineering, 1(10): 1383–1400, 2021, https://doi.org/10.1021/acsestengg.1c00180.
Kumar A., Subudhi S., Preparation, characterization and heat transfer analysis of nanofluids used for engine cooling, Applied Thermal Engineering, 160: 114092, 2019, https://doi.org/10.1016/j.applthermaleng.2019.114092.
Kumar M.U., Sivaganesan S., Dhanasekaran C., Parthiban A., Analysis of performance, combustion and emission parameters in di diesel engine by using mahua methyl ester along with nano metal additives titanium dioxide, Materials Today: Proceedings, 37(2): 3404–3410, 2021, https://doi.org/10.1016/j.matpr.2020.09.277.
Said Z., Assad M.E.H., Hachicha A.A., Bellos E., Abdelkareem M.A., Alazaizeh D.Z., Yousef B.A.A., Enhancing the performance of automotive radiators using nanofluids, Renewable and Sustainable Energy Reviews, 112: 183–194, 2019, https://doi.org/10.1016/j.rser.2019.05.052. 2019,
Debbarma S., Misra R.D., Effects of iron nanoparticles blended biodiesel on the performance and emission characteristics of a diesel engine, Journal of Energy Resources Technology, 139(4): 042212, 2017, https://doi.org/10.1115/1.4036543.
Jiaqiang E., Zhang Z., Chen J., Pham M.H., Zhao X., Peng Q., Zhang B., Yin Z., Performance and emission evaluation of a marine diesel engine fueled by water biodiesel-diesel emulsion blends with a fuel additive of a cerium oxide nanoparticle, Energy Conversion and Management, 169: 194–205, 2018, https://doi.org/10.1016/j.enconman.2018.05.073.
Yaşar A., Keskin A., Yıldızhan Ş., Uludamar E., Emission and vibration analysis of diesel engine fuelled diesel fuel containing metallic based nanoparticles, Fuel, 239: 1224–1230, 2019, https://doi.org/10.1016/j.fuel.2018.11.113.
Candeia R.A., Silva M.C.D., Carvalho Filho J.R., Brasilino M.G.A., Bicudo T.C., Santos I.M.G., Souza A.G., Influence of soybean biodiesel content on basic properties of biodiesel–diesel blends, Fuel, 88(4): 738–743, 2009, https://doi.org/10.1016/j.fuel.2008.10.015.
Wei J., Yin Z., Wang C., Lv G., Zhuang Y., Li X., Wu H., Impact of aluminium oxide nanoparticles as an additive in diesel-methanol blends on a modern DI diesel engine, Applied Thermal Engineering, 185: 116372, 2021, https://doi.org/10.1016/j.applthermaleng.2020.116372.
Firrisa M.T., van Duren I., Voinov A., Energy efficiency for rapeseed biodiesel production in different farming systems, Energy Efficiency, 7: 79–95, 2014, https://doi.org/10.1007/s12053-013-9201-2.
Dinesha P., Kumar S., Rosen M.A., Effects of particle size of cerium oxide nanoparticles on the combustion behavior and exhaust emissions of a diesel engine powered by biodiesel/diesel blend, Biofuel Research Journal, 8(2): 1374–1383, 2021, https://doi.org/10.18331/BRJ2021.8.2.3.
Mosarof M.H., Kalam M.A., Masjuki H.H., Ashraful A.M., Rashed M.M., Imdadul H.K., Monirul I.M., Implementation of palm biodiesel based on economic aspects, performance, emission, and wear characteristics, Energy Conversion and Management, 105: 617–629, 2015, https://doi.org/10.1016/j.enconman.2015.08.020.
Yang C.Y., Fang Z., Li B., Long Y.-F., Review and prospects of Jatropha biodiesel industry in China, Renewable and Sustainable Energy Reviews, 16(4): 2178–2190, 2012, https://doi.org/10.1016/j.rser.2012.01.043.
Chauhan B.S., Kumar N., Cho H.M., A study on the performance and emission of a diesel engine fueled with Jatropha biodiesel oil and its blends, Energy, 37(1): 616–622, 2012, https://doi.org/10.1016/j.energy.2011.10.043.
Datta A., Mandal B.K., Use of Jatropha biodiesel as a future sustainable fuel, Energy Technology & Policy, 1(1): 8–14, 2014, https://doi.org/10.1080/23317000.2014.930723.
Thapa S., Indrawan N., Bhoi P.R., An overview on fuel properties and prospects of Jatropha biodiesel as fuel for engines, Environmental Technology & Innovation, 9: 210–219, 2018, https://doi.org/10.1016/j.eti.2017.12.003.
Srinidhi C., Madhusudhan A., A diesel engine performance investigation fuelled with nickel oxide nano fuel-methyl ester, International Journal of Renewable Energy Research, 7(2): 676–681, 2017, https://doi.org/10.20508/ijrer.v7i2.5566.g7046.
Bošnjaković M., Sinaga N., The perspective of large-scale production of algae biodiesel, Applied Sciences, 10(22): 8181, 2020, https://doi.org/10.3390/app10228181.
Barua P., Chowdhury T., Chowdhury H., Islam R., Hossain N., Potential of power generation from chicken waste-based biodiesel, economic and environmental analysis: Bangladesh’s perspective, SN Applied Sciences, 2(3): 330, 2020, https://doi.org/10.1007/s42452-020-2113-9.
Liaquat A.M., Masjuki H.H., Kalam M.A., Fattah I.R., Hazrat M.A., Varman M., Mofijur M., Shahabuddin M., Effect of coconut biodiesel blended fuels on engine performance and emission characteristics, Procedia Engineering, 56: 583–590, 2013, https://doi.org/10.1016/j.proeng.2013.03.163.
Sunil S., Chandra Prasad B.S., Kakkeri S., Suresha, Studies on titanium oxide nanoparticles as fuel additive for improving performance and combustion parameters of CI engine fueled with biodiesel blends, Materials Today: Proceedings, 44(Part 1): 489–499, 2021, https://doi.org/10.1016/j.matpr.2020.10.200.
Ferreira M.I., Reinhardt C.F., Allelopathic weed suppression in agroecosystems: A review of theories and practices, African Journal of Agricultural Research, 11(6): 450–459, 2016, https://doi.org/10.5897/AJAR2015.10580.
Kunz Ch., Sturm D.J., Varnholt D., Walker F., Gerhards R., Allelopathic effects and weed suppressive ability of cover crops, Plant, Soil and Environment, 62(2): 60–66, 2016, https://doi.org/10.17221/612/2015-PSE.
Singh B., Kaur J., Singh K., Production of biodiesel from used mustard oil and its performance analysis in internal combustion engine, Journal of Energy Resources Technology, 132(3): 031001, 2010, https://doi.org/10.1115/1.4002203.
Mitrović P.M., Stamenković O.S., Banković-Ilić I., Djalović I.G., Nježić Z.B., Farooq M., Siddique K.H.M., Veljković V.B., White mustard (Sinapis alba L.) oil in biodiesel production: A review, Frontiers in plant science, 11: 299, 2020, https://doi.org/10.3389/fpls.2020.00299.
Aslan V., An overview of biodiesel produced from 2nd generation feedstock: Mustard seed types, BioEnergy Research, 16(3): 1380–1400, 2023, https://doi.org/10.1007/s12155-022-10536-9.
Udayakumar M., Sivaganesan S., Sivamani S., One-factor-at-a-time approach for optimization of biodiesel synthesis from crude mahua oil, International Journal of Mechanical Engineering, 7(1): 1577–1584, 2022.
Udayakumar M., Sivaganesan S., Sivamani S., Process optimization of KOH catalyzed biodiesel production from crude sunflower-mahua oil, Biofuels, 13(8): 1031–1039, 2022, https://doi.org/10.1080/17597269.2022.2071068.
Antolín G., Tinaut F.V., Briceño Y., Castaño V., Pérez C., Ramírez A.I., Optimisation of biodiesel production by sunflower oil transesterification, Bioresource Technology, 83(2): 111–114, 2002, https://doi.org/10.1016/S0960-8524(01)00200-0.
Thirumarimurugan M., Sivakumar V.M., Xavier A.M., Prabhakaran D., Kannadasan T., Preparation of biodiesel from sunflower oil by transesterification, International Journal of Bioscience Biochemistry and Bioinformatics, 2(6): 441, 2012, https://doi.org/10.7763/IJBBB.2012.V2.151.
Udayakumar M., Sivaganesan S., Sivamani S., Performance and emissions of lemon peel oil biodiesel powered single cylinder direct injection diesel engine loaded with ceria nanoparticles additives and stabilized zirconia coating, Materials Today: Proceedings, 66(Part 4): 1994–2000, 2022, https://doi.org/10.1016/j.matpr.2022.05.441.
Shanmugam M., Sathiyamurthy S., Rajkumar G., Saravanakumar S., Tamil Prabakaran S., Shaisundaram V.S., Effect of thermal barrier coating in CI engines fueled with Citrus Medica Citron peel oil biodiesel dosed with cerium oxide nanoparticle, Materials Today: Proceedings, 37(Part 2): 1943–1956, 2021, https://doi.org/10.1016/j.matpr.2020.07.485.
Öztürk E., Performance emissions combustion and injection characteristics of a diesel engine fuelled with canola oil–hazelnut soapstock biodiesel mixture, Fuel Processing Technology, 129: 183–191, 2015, https://doi.org/10.1016/j.fuproc.2014.09.016.
Ciubota-Rosie C., Ruiz J.R., Ramos M.J., Pérez Á., Biodiesel from Camelina sativa: A comprehensive characterisation, Fuel, 105: 572–577, 2013, https://doi.org/10.1016/j.fuel.2012.09.062.
Ong H.C., Mahlia T.M.I., Masjuki H.H., Norhasyima R.S., Comparison of palm oil, Jatropha curcas and Calophyllum inophyllum for biodiesel: A review, Renewable and Sustainable Energy Reviews 15(8): 3501–3515, 2011, https://doi.org/10.1016/j.rser.2011.05.005.
Arumugam A., Ponnusami V.J.R.E., Biodiesel production from Calophyllum inophyllum oil a potential non-edible feedstock: An overview, Renewable Energy, 131: 459–471, 2019, https://doi.org/10.1016/j.renene.2018.07.059.
Demirbas A., Importance of biodiesel as transportation fuel, Energy Policy, 35(9): 4661–4670, 2007, https://doi.org/10.1016/j.enpol.2007.04.003.
Ghanati S.G., Doğan B., Yeşilyurt M.K., The effects of the usage of silicon dioxide SiO2 and titanium dioxide TiO2 as nano-sized fuel additives on the engine characteristics in diesel engines: A review, Biofuels, 15(2): 229–243, 2023, https://doi.org/10.1080/17597269.2023.2221882.
Ali Z.A.A.A., Takhakh A.M., Al-Waily M., A review of use of nanoparticle additives in lubricants to improve its tribological properties, Materials Today: Proceedings, 52(Part 3): 1442–1450, 2022, https://doi.org/10.1016/j.matpr.2021.11.193.
Dhahad H.A., Hamadi A.S., Ali S.A., Effect of aluminum oxide nanoparticles fuel additives on the performance and emissions of diesel engine, Engineering and Technology Journal, 359(Part A, No. 9): 956–960, 2017.
Tewari P., Doijode E., Banapurmath N.R., Yaliwal V.S., Experimental investigations on a diesel engine fuelled with multiwalled carbon nanotubes blended biodiesel fuels, International Journal of Emerging Technology and Advanced Engineering, 33: 72–76, 2013.
Saxena V., Kumar N., Saxena V.K., A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled CI engine, Renewable and Sustainable Energy Reviews, 70: 563–588, 2017, https://doi.org/10.1016/j.rser.2016.11.067.
Giordano S., Adamo P., Spagnuolo V., Vaglieco B.M., Instrumental and bio-monitoring of heavy metal and nanoparticle emissions from diesel engine exhaust in controlled environment, Journal of Environmental Sciences, 22(9): 1357–1363, 2010, https://doi.org/10.1016/S1001-0742(09)60262-X.
Chacko N., Jeyaseelan T., Comparative evaluation of graphene oxide and graphene nanoplatelets as fuel additives on the combustion and emission characteristics of a diesel engine fuelled with diesel and biodiesel blend, Fuel Processing Technology, 204: 106406, 2020, https://doi.org/10.1016/j.fuproc.2020.106406.
Afzal A., Ağbulut Ü., Soudagar M.E.M., Razak R.K.A., Buradi A., Saleel C.A., Blends of scum oil methyl ester alcohols silver nanoparticles and the operating conditions affecting the diesel engine performance and emission: An optimization study using Dragon fly algorithm, Applied Nanoscience, 11: 2415–2432, 2021, https://doi.org/10.1007/s13204-021-02046-5.
Rajak U., Ağbulut Ü., Veza I., Dasore A., Sarıdemir S., Verma T.N., Numerical and experimental investigation of CI engine behaviours supported by zinc oxide nanomaterial along with diesel fuel, Energy, 239(Part E): 122424, 2022, https://doi.org/10.1016/j.energy.2021.122424.
Canale L.C.F., Xu G., Liang H., Liu J., Totten G.E., Surface engineered coatings and surface additive interactions for boundary film formation to reduce frictional losses in the automotive industry: A review, SAE Technical paper, 2005-01-2180, 2005, https://doi.org/10.4271/2005-01-2180.
Kotia A., Chowdary K., Srivastava I., Ghosh S.K., Ali M.K.A., Carbon nanomaterials as friction modifiers in automotive engines: recent progress and perspectives, Journal of Molecular Liquids, 310: 113200, 2020, https://doi.org/10.1016/j.molliq.2020.113200.
Xie S., Wang Z., Tan W., Zhu Y., Collier S., Ma L., Ehrlich S.N., Xu P., Yan Y., Xu T., Deng J., Liu F., Highly active and stable palladium catalysts on novel ceria–alumina supports for efficient oxidation of carbon monoxide and hydrocarbons, Environmental Science & Technology, 55(11): 7624–7633, 2021, https://doi.org/10.1021/acs.est.1c00077.
Bae W.B., Kim D.Y., Byun S.W., Lee S.J., Kuk S.K., Kwon H.J., Lee H.C., Hazlett M.J., Liu C., Kim Y.J., Kim M., Kang S.B., Direct NO decomposition over Rh-supported catalysts for exhaust emission control, Chemical Engineering Journal, 475: 146005, 2023, https://doi.org/10.1016/j.cej.2023.146005.
Ali M.K.A., Fuming P., Younus H.A., Abdelkareem M.A., Essa F.A., Elagouz A., Xianjun H., Fuel economy in gasoline engines using Al2O3/TiO2 nanomaterials as nanolubricant additives, Applied Energy, 211: 461–478, 2018, https://doi.org/10.1016/j.apenergy.2017.11.013.
Wozniak M., Batory D., Siczek K., Ozuna G., Changes in total friction in the engine friction in timing chain transmissions and engine emissions due to adding TiO2 nanoparticles to engine oil, Emission Control Science and Technology, 6: 358–379, 2020, https://doi.org/10.1007/s40825-020-00167-x.
Udayakumar M., Sivamani S., Devandiran E., Cerium oxide as an additive in biodiesel/diesel fueled internal combustion engines: A concise review, International Journal of Mechanical Engineering, 7(1): 5954–5959, 2022.
Rohrer G., Predictive synthesis and characterization of oxide films with metastable structures, Plenary Lecture delivered on Room Town & Country – Session P.L. at 45th International Conference on Metallurgical Coatings and Thun Films, April 23–27, 2018, San Diego, CA.
Roy O., Sharif A., Industrial implementation of polymer-nanocomposites, [in:] Advanced Polymer Nanocomposites. Science, Technology and Applications, Hoque M.E., Ramar K., Sharif A. [Eds.], pp. 537–546, Woodhead Publishing, 2022, https://doi.org/10.1016/B978-0-12-824492-0.00005-2.
Rahman M., Islam K.S., Dip T.M., Chowdhury M.F.M., Debnath S.R., Hasan S.M.M., Sakib M.S., Saha T., Padhye R., Houshyar S., A review on nanomaterial-based additive manufacturing: Dynamics in properties, prospects, and challenges, Progress in Additive Manufacturing, 9(4): 1197–1224, 2024, https://doi.org/10.1007/s40964-023-00514-8.
Bolan S., Sharma S., Mukherjee S., Zhou P., Mandal J., Srivastava P., Hou D., Edussuriya R., Vithanage M., Truong V.K., Chapman J., Xu Q., Zhang T., Bandara P., Wijesekara H., Rinklebe J., Wang H., Siddique K.H.M., Kirkham M.B., Bolan N., The distribution, fate, and environmental impacts of food additive nanomaterials in soil and aquatic ecosystems, Science of the Total Environment, 916: 170013, 2024, https://doi.org/10.1016/j.scitotenv.2024.170013.
Ashraf S.A., Siddiqui A.J., Elkhalifa A.E.O., Khan M.I., Patel M., Alreshidi M., Moin A., Singh R., Snoussi M., Adnan M., Innovations in nanoscience for the sustainable development of food and agriculture with implications on health and environment, Science of the Total Environment, 768: 144990, 2021, https://doi.org/10.1016/j.scitotenv.2021.144990.
Bumbudsanpharoke N., Ko S., Nano‐food packaging: An overview of market migration research and safety regulations, Journal of Food Science, 80(5): R910–R923, 2015, https://doi.org/10.1111/1750-3841.12861.
Liu Q., Ding X., Pang Y., Cao Y., Lei J., Wu J., Zhang T., New insights into the safety assessment of quantum dots: potential release pathways, environmental transformations, and health risks, Environmental Science: Nano, 9(9): 3277–3311, 2022, https://doi.org/10.1039/D2EN00252C.
Fei L., Bilal M., Qamar S.A., Imran H.M., Riasat A., Jahangeer M., Ghafoor M., Ali N., Iqbal H.M.N., Nano-remediation technologies for the sustainable mitigation of persistent organic pollutants, Environmental Research, 211: 113060, 2022, https://doi.org/10.1016/j.envres.2022.113060.
Ashraf A., Shafi W.K., Ul Haq M.I., Raina A., Dispersion stability of nano additives in lubricating oils – An overview of mechanisms, theories, and methodologies, Tribology-Materials Surfaces Interfaces, 16(1): 34–56, 2022, https://doi.org/10.1080/17515831.2021.1981720.
Pownraj C., Valan Arasu A., Effect of dispersing single and hybrid nanoparticles on tribological, thermo-physical, and stability characteristics of lubricants: A review, Journal of Thermal Analysis and Calorimetry, 143(2): 1773–1809, 2021, https://doi.org/10.1007/s10973-020-09837-y.
Soudagar M.E.M., Nik-Ghazali N.N., Kalam M.A., Badruddin I.A., Banapurmath N.R., Akram N., The effect of nano-additives in diesel-biodiesel fuel blends: A comprehensive review on stability, engine performance, and emission characteristics, Energy Conversion and Management, 178: 146–177, 2018, https://doi.org/10.1016/j.enconman.2018.10.019.
Dhanola A., Gajrani K.K., Novel insights into graphene-based sustainable liquid lubricant additives: A comprehensive review, Journal of Molecular Liquids, 386: 122523, 2023, https://doi.org/10.1016/j.molliq.2023.122523.
Kumar M.U., Sivaganesan S., Dhanasekaran C., Parthiban A., Analysis of performance, combustion, and emission parameters in DI diesel engine by using Mahua methyl ester along with nano metal additives titanium dioxide, Materials Today: Proceedings, 37(Part 2): 3404–3410, 2021, https://doi.org/10.1016/j.matpr.2020.09.277.
Vickram S., Manikandan S., Deena S.R., Mundike J., Subbaiya R., Karmegam N., Jones S., Yadav K.K., Chang S.W., Ravindran B., Awasthi M.K., Advanced biofuel production policy and technological implementation of nano-additives for sustainable environmental management – A critical review, Bioresource Technology, 387: 129660, 2023, https://doi.org/10.1016/j.biortech.2023.129660.
Farid M.U., Kharraz J.A., Sun J., Boey M.-W., Riaz M.A., Wong P.W., Jia M., Zhang X., Deka B.J., Khanzada N.K., Guo J., An A.K., Advancements in nanoenabled membrane distillation for a sustainable water‐energy‐environment nexus, Advanced Materials, 36(17): 2307950, 2023, https://doi.org/10.1002/adma.202307950.
Wu H., Fahy W.P., Kim S., Kim H., Zhao N., Pilato L., Kafi A., Bateman S., Koo J.H., Recent developments in polymers/polymer nanocomposites for additive manufacturing, Progress in Materials Science, 111: 100638, 2020, https://doi.org/10.1016/j.pmatsci.2020.100638.
Zhang N., Song X., Jiang H., Tang C.Y., Advanced thin-film nanocomposite membranes embedded with organic-based nanomaterials for water and organic solvent purification: A review, Separation and Purification Technology, 269: 118719, 2021, https://doi.org/10.1016/j.seppur.2021.118719.
DOI: 10.24423/engtrans.3435.2025