Engineering Transactions, 8, 3, pp. 511-528, 1960

Wpływ Ciężaru Własnego na Pełzające Wyboczenie Prętów

M. Życzkowski
Instytut Podstawowych Problemów Techniki PAN
Poland

The problem of creep buckling of vertical cantilever bars loaded by a concentrated force and the weight of the bar is considered. The principal assumptions are as follows: the deflections are infinitely small; the bar has a certain initial curvature (technical type of buckling) the material is subject to a linear creep law of Maxwellian type. The fundamental equation is that of creep buckling (2.10). It is integrated by separating variables and expanding the eigenfunctions into a power series of a small parameter a, for which the weight of the bar is assumed («particular» solutions of the Eq. (2.10). The logarithmic creep buckling rate is expressed by the series (4.1). Then the small parameter method is modified by assuming the Eq. (4.2) where the «reduced» force m is expanded in a series. In the next part of the paper the equation of the initial deflection curve y(x) corresponding to the first particular solution of the creep buckling equation is established. This curve is determined by the Eqs. (5.5), (5.9) and (5.17); it differs very little from the quarter of a sine-curve. The rate of convergence of the series obtained is investigated by calculating the critical weight on the basis of the criterion (8.1) and comparing it with the known accurate solution- As a final conclusion it is found that for an initial deflection curve differing very little from the quarter of a sine-curve, the distributed load (the weight) may be replaced, in an approximate manner, both for creep buckling and
elastic buckling, by the equivalent concentrated force P = 0,3.
Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

G. BÜRGERMEISTER, H. STEUP, Stabilitätstheorie mit Erläuterungen zu DIN 4114, Teil 1, Akademie-Verlag, Berlin 1957.

[in Russian]

[in Russian]

T. GALKIEWICZ, Zastosowanie metody małego parametru do określania siły krytycznej ściskanego pręta o zmiennym przekroju poprzecznym, Zesz. Nauk. Polit. Łódzkiej, Mechanika 4, Lódz 1956.

A. GREBNHILL, Determination of the Greatest Height Consistent with Stability That a Vertical Pole or Mast Can be Made, or the Greatest Height to which a Tree of Given Properties Can Grow, Proc. Cambridge Phil. Soc. 4 (1881), 65-75.

P. G. HEIM, Über Gleichgewicht und. Bewegung gespannter elastischer fester Körper, Stuttgart u. Tübingen 1838.

N. J. HOFF, A Survey of the Theories of Creep Buckling, Proc. Third US Nat. Congr. Appl. Mech., Brown University 1958, publ. Pergamon Press 1958.

J. A. H. HULT, Krypknäckning av strävor, Instn. Hallfasthetslära Kungl. Tekniska Högskolan, Publ. nr 111, Stockholm 1955.

K. KARAS, Uber die Knickung gerader Stäbe durch ihr Eigengewicht, Z. -Bauwesen, 1925, S. 86.

Y. H. KUO, On the Flow of an Incompressible Viscous Fluid Past a Flat Plate at Moderate Reynolds Number, J. Math. Phys. 32 (1953), 83.

M. J. LIGHTHILL, A Technique for Rendering Approximate Solutions to Physical Problems

Uniformly Valid, Phil. Mag., 40 (1949), 1179.

J. NALESZKIEWICZ, Rozwazania ogólne nad zginaniem prostych belek sciskanych, Ksiega

Jubil. M. T. Hubera, Gdansk 1950, 251-274.

[in Russian]

M. PIATEK, Linia ugiecia belki obustronnie utwierdzonej pray dowolnym obciqzeniu i amien- nym praekroju, Zjazd Nauk. PZITB, t. 3, Gdansk 1949, 215-227.

[in Russian]

F. REINITZHUBER, Stabilität gerader Stäbe mit linear veränderlicher Längskraft im unela- stischen Bereich, Alfons Leon Gedenkschrift, Verlag Allg. Bau-Z., Wien 1952, 18-22.

F. REINITZHUBER, Knickung gerader Stäbe mit linear veränderlicher Längskraft im elasti- schen und unelastischen Bereich, Bautechnik-Architektur, 1955, 1-32.

F. REINITZHUBER, Angenäherte Formeln für Knickung von Stäben mit linaer veränderlicher Längskraft, Publ. Int. Assn. Bridge Struct. Engin., 13 (1953), 309-319.

Tables of Functions and Zeros of Functions, US Nat. Bureau of Standards, Appl. Math. Series, 37, November 1954.

H. S. TSIEN, The Poincare-Lighthill-Kuo Method, Advances in Applied Mechanics, Vol. 4, Acad. Press inc., New York 1956, 281-349.

F. A. WILLERS, Das Knicken schwerer Gestänge, Z. Angew. Math. Mech. 21 (1941), 43.

M. WNUK, M. ŻYCZKOWSKI, Wpływ osłabienia pręta na sile krytyczną w zakresie sprężysto-plastycznym, Rozpr. inzyn., 3, 7 (1959), 311-336.

H. YOSHIHARA, On the Lateral Buckling of a Tapered Cantilever Beam, AF Techn. Rep.

WADC TR 54-477, October 1954.

M. ŻYCZKOWSKI, Some Problems of Creep Buckling of Homogeneous and Non-Homogeneous Bars, Proc. Symp. on Non-Homogeneity in Elasticity and Plasticity, Pergamon Press, 1959, 353-363.

M. ZYCZKOWSKI, Przegląd i klasyfikacja prac nad wyboczeniem pełzającym, Czasop. Techn., 1, 65 (1960).

M. ŻYCZKOWSKI, Geometrically Non-Linear Creep Buckling of Bars, Arch. Mech. stos., 3, 12 (1960), 379-411.