Engineering Transactions, 63, 1, pp. 133–142, 2015
10.24423/engtrans.291.2015

From Tolerance Modeling to Exact Description of Heat Conduction in Biperiodic Composites

Ewaryst WIERZBICKI
Warsaw University of Life Sciences 02-787 Warsaw Nowoursynowska 166
Poland

Marta MAZEWSKA
Warsaw University of Life Sciences 02-787 Warsaw Nowoursynowska 166
Poland

In the paper we study the temperature boundary effect behavior in the dividing wall made of a composite conductor in which every area parallel to the outside and the inside plane areas has identical biperiodic structure. The proposed modeling approach is restricted to the hexagonal case of bi-periodicity in which the hexagonal cell can be divided onto three rhombus parts with different thermal properties. Considerations deal with anisotropic conductors.
Keywords: tolerance averaging, heat conduction, biperiodic conductors, boundary effect.
Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

Cielecka I., Jędrysiak J. (2006), A non-asymptotic model of dynamics of honeycomb lattice-type plates, J. Sound and Vibration, 296, 130-149.

Kula D., Mazewska M., Wierzbicki E. (2012), Some remarks on the tolerance averaging of heat conduction in chessboard palisade-type periodic composites, Scientific Review, Engineering and Enviromental Sciences Vol. 21 (3), Nr 57, 131-140, Warsaw.

Mazewska M. (2013), Modelowanie tolerancyjne efektu brzegowego przewodnictwa ciepła w kompozytach o strukturze heksagonalnej, doctoral thesis, Warsaw University of Life Sciences, Warsaw.

Mazewska M, Wierzbicki E. (2013), Modelowanie tolerancyjne przewodnictwa ciepła w kompozytach o strukturze dwukierunkowo-periodycznej, Acta Scientarum Polonorum, Architectura 12 (1) 2013, 3-17, Warsaw.

Jedrysiak J. (2010), Termomechanika laminatów, płyt i powłok o funkcyjnej gradacji własności, Lodz Technical University Press, Łódź.

Michalak B. (2010), Termomechanika ciał z pewną niejednorodną mikrostrukturą: technika tolerancyjnej aproksymacji, Łódź Technical University Press, Łódź.

Nagórko W. (2008), Wybranemetodymodelowaniapłytniejednorodnych, Publications of Warsaw University of Life Sciences – SGGW, Warsaw.

Nagórko W., Wągrowska M. (2002), A contribution to model ling of composite solids, J. Theor. Appl. Mech., 40, 149-158.

Sideman S., Moalem-Maron D.(1982), Direct Contact Condensation, Advances in Heat Transfer,Academic Press, New York, 228-276.

Vutz N., Angrist S. W. (1970), Thermal Contact Resistance of Anisotropic Materials, J. Heat Transfer 92(1), 17-20.

Wierzbicki E., WoźniakCz. (2000), On the dynamic behaviour of honeycomb based composite solids, ActaMechanica, 141, 161-172.

WoźniakCz., Wierzbicki E. (2000),Averaging techniques in thermomechanics of composite solids, Częstochowa University of Technology Press, Częstochowa.

WoźniakCz. (Ed.),(2010), Developments in Mathematical Modeling and Analysis of Microstructured Media, Silesian Technical University Press, Gliwice.

WoźniakCz. (Ed.),(2009), Thermomechanics of microheterogeneous solids and structures. Tolerance averaging approach, Lodz Technical University Press, Łódź.

Woźniak M., Wierzbicki E., WoźniakCz. (2002),A macroscopic model of the diffusion and heat transfer processes in a periodically micro-stratified solid layer, ActaMechanica 157, 175-185.

Mazewska M., Kula D., Wierzbicki E. (2014), Boundary effect behavior in the hexagonal-type biperiodic structures with rotational symmetry, Journal of Applied Mathematics and Computational Mechanics, 2 2014, 134-144.

Kula D., Wierzbicki E. (2014), The Fourier series implementation issues in the tolerance modeling of thermal conductivity of periodic composites, Ingineering Transactions (this issue).




DOI: 10.24423/engtrans.291.2015