Tak Zwanej Aproksymacji Jednokrotnie Optymalnej i Niektórych Jej Zastosowaniach w Mechanice
Sec. 4 is devoted to a numerical determination of the extremum values of the function, necessary for the application of the equations derived. The extremum value fm is determined first by means of the series (4.7) and then by means of finite differences the function being approximated by means of a polynomial of the second (4.11), third (4.18) and fourth order polynomial (4.12) and (4.13). As an example the equations obtained are used to calculate the extremum of the function f (x) = - x In x.
Section 5 brings an estimate of the error of the «onefold optimum» approximation by means of the classical method consisting of making use of the general formula (5.7). This estimate is quoted merely for comparison purposes, a more accurate estimate being concerned with the technique of obtaining the coefficients of the approximating polynomial by means of the condition (2.4)., Some examples are also given concerning the application of the approximation method proposed to the theory of stability and the theory of plasticity; the derivation of approximate equations for the critical force are discussed in detail for a clamped bar loaded as shown by Fig. 1. Figure 2 and Table 6 represent the results. The equations (6.24) and (6.25) are proposed as final formulae.
References
N.I. ACHIEZER, Teoria aproksymacji (tlum. z ros.), PWN, Warszawa 1957.
[in Russian]
[in Russian]
[in Russian]
L. Fox, The numerical solution of two-point boundary problems, Clarendon Press, Oxford 1957.
[in Russian]
D.R. HARTREE, Numerical analysis, Clarendon Press, Oxford 1958.
D. JACKSON, The theory of approximation, Am. Math. Soc. Colloquium Publ., Vol. 11, 1930.
J. ŁUKASZEWICZ, M. WARMUS, Metody numeryczne i graficzne, t. 1, PWN, Warszawa 1956.
[in Russian]
[in Russian]
W. E. MILNE, Numerical Culculus, Princeton UP 1949 (thum. ros., Moskwa 1952).
ST. PIECHNIK, M. ŻYCZKOWSKI, On the plastic interaction-curve for bending and torsion of a circular bar, Arch. Mech. Stos. 5, 13 (1961), 669-692.
S. D. PONOMARIEW i inni, Współczesne metody obliczeń wytrzymałościowych w budowie maszyn, t. II, PWN, Warszawa 1958 (tłum. z ros.).
[in Russian]
[in Russian]
W. WALTER, Über Tschebyscheff-Approximation differenzierbarer Funktionen, GAMM-Tagung Würzburg, April 1961.
H. WERNER, Bemerkungen zur Tschebyscheffschen Approximation mit rationalen Funktionen, GAMM-Tagung Würzburg, April 1961.
W. WETTERLING, Zur Anwendung des Newtonschen Iterationsverfahrens bei der numerischen Behandlung des Tschebyscheff-Approximation, GAMM-Tagung Würzburg, April 1961.
M. WNUK, Stan graniczny pręta jednocześnie skręcanego i rozciąganego przy dowolnym kształcie przekroju, Rozpr. Inzyn., 3, 10 (1962).
M. ŻYCZKOWSKI, Obliczanie sił krytycznych dla sprężystych prętów niepryzmatycznych metoda interpolacji częściowej, Rozpr. Inzyn., 3, 4 (1956), 367-412.
M. ŻYCZKOWSKI, Potenzieren von verallgemeinerten Potenzreihen mit beliebigem Exponent, Z. angew. Math, Physik, 6, 12 (1961), 572-576.
M. ŻYCZKOWSKI, Krzywe graniczne dla belek jednocześnie rozciąganych i zginanych i o dowolnym przekroju (w druku).