Engineering Transactions, 71, 1, pp. 53–79, 2023
10.24423/EngTrans.2245.20230213

Unsteady Hydromagnetic Mixed Convection of a Radiating and Reacting Nanofluid in a Microchannel with Variable Properties

Mesfin Zewde KEFENE
Adama Science and Technology University
Ethiopia

Oluwole Daniel MAKINDE
ORCID ID 0000-0002-3991-4948
Stellenbosch University
South Africa

Lemi Guta ENYADENE
Adama Science and Technology University
Ethiopia

Unsteady MHD mixed convection of nanofluid heat transfer in a permeable microchannel with temperature-dependent fluid properties is studied under the influence of a first-order chemical reaction and thermal radiation. The viscosity and thermal conductivity are assumed to be related to temperature exponentially. Using suitable dimensionless variables and parameters, the governing partial differential equations (PDEs) are transformed to their corresponding dimensionless forms solved numerically by a semi-discretization finite difference scheme along with the Runge-Kutta-Fehlberg integration technique. The effects of model parameters on the profiles of velocity, temperature, concentration, skin friction, the Nusselt number, and the Sherwood number are discussed qualitatively with the aid of graph.

Keywords: nanofluid; mixed convection; permeable microchannel; Buongiorno model; thermal radiation
Full Text: PDF
Copyright © The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

References

Abu-Nada E., Oztop H.F., Numerical analysis of Al2O3/water nanofluids natural convection in a wavy walled cavity, Numerical Heat Transfer, Part A: Application Engineering, 59(5): 403–419, 2011, doi: 10.1080/10407782.2011.552363.

Belhadj A., Numerical investigation of forced convection of nanofluid in microchannels heat sinks, Journal of Thermal Engineering, 4(5): 2263–2273, 2018, doi: 10.18186/thermal.438480.

Bellos E., Tzivanidis C., A review of concentrating solar thermal collectors with and without nanofluids, Journal of Thermal Analysis and Calorimetry, 135(1): 763–786, 2011, doi: 10.1007/s10973-018-7183-1.

Bowers J., Cao H., Qiao G., Li Q., Zhang G., Mura E., Ding Y., Flow and heat transfer behaviour of nanofluids in microchannels, Progress in Natural Science: Materials International, 28(2): 225–234, 2018, doi: 10.1016/j.pnsc.2018.03.005.

Choi S.U., Nanofluid technology: current status and future research, Conference: Korea-U.S. Technical Conference on Strategic Technologies, Vienna, VA, United States, 22-24 Oct. 1998, United States 1998, https://www.osti.gov/servlets/purl/11048.

Choi S.U.S., Eastman J.A., Enhancing thermal conductivity of fluids with nanoparticles, Proceedings of The 1995 ASME International Mechanical Engineering Congress and Exposition, 1995.

Das S.K., Choi S.U.S, Patel H.E., Heat transfer in nanofluids – a review, Heat Transfer Engineering, 27(10): 3–19, 2006, doi: 10.1080/01457630600904593.

Gavara M., Asymmetric forced convection of nanofluids in a channel with symmetrically mounted rib heaters on opposite walls, Numerical Heat Transfer, Part A: Applications, 62(11): 884–904, 2012, doi: 10.1080/10407782.2012.707057.

Herwig H., Mahulikar S. P., Variable property effects in single-phase incompressible flows through microchannels, International Journal of Thermal Science, 45(10): 977–981, 2006, doi: 10.1016/j.ijthermalsci.2006.01.002.

Hindebu B., Makinde O.D., Guta L., Unsteady mixed convection flow of variable viscosity nanofluid in a micro-channel filled with a porous medium, Indian Journal of Physics, 96(6): 1749–1766, 2022, doi: 10.1007/s12648-021-02116-y.

Kakaҫ S., Pramuanjaroenkij A., Review of convective heat transfer enhancement with nanofluids, Journal of Heat and Mass Transfer, 52(13–14): 3187–3196, 2009, doi: 10.1016/j.ijheatmasstransfer.2009.02.006.

Karimipour A., Afrand M., Magnetic field effects on the slip velocity and temperature jump of nanofluid forced convection in a microchannel, Proceedings of the Institution of Mechanical Engineers, Part C Journal of Mechanical Engineering Science, 230(11): 1921–1936, 2016, doi: 10.1177/0954406215586232.

Kefene M.Z., Makinde O.D., Enyadene L.G., MHD variable viscosity mixed convection of nanofluid in a microchannel with permeable walls, Indian Journal of Pure & Applied Physics, 58(12): 892–908, 2020, doi: 10.56042/ijpap.v58i12.36784.

Khan M.G., Fartaj A., A review on microchannel heat exchangers and potential applications, International Journal of Energy Research, 35(7): 553–582, 2011, doi: 10.1002/er.1720.

Khodabandeh E., Akbari O.A., Toghraie D., Pour M.S., Jönsson P.G., Ersson M., Numerical investigation of thermal performance augmentation of nanofluid flow in microchannel heat sinks by using of novel nozzle structure: sinusoidal cavities and rectangular ribs, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41: 443, 2019, doi: 10.1007/s40430-019-1952-z.

Kleinstreuer C., Li J., Koo J., Microfluidics of nano-drug delivery, International Journal of Heat and Mass Transfer, 51(23–24): 5590–5597, 2008, doi: 10.1016/j.ijheatmasstransfer.2008.04.043.

Kumar A., Nath S., Bhanja D., Effect of nanofluid on thermo hydraulic performance of double layer tapered microchannel heat sink used for electronic chip cooling, Numerical Heat Transfer, Part A: Applications, 73(7): 429–445, 2018, doi: 10.1080/10407782.2018.1448611.

Kumar R., Physical effects of variable fluid properties on gaseous slip-flow through a microchannel heat sink, Journal of Thermal Engineering, 7(3): 635–649, 2021, doi: 10.18186/thermal.888496.

Lee J., Mudawar I., Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels, International Journal of Heat and Mass Transfer, 50(3–4): 452–463, 2007, doi: 10.1016/j.ijheatmasstransfer.2006.08.001

Li J., Kleinstreuer C., Thermal performance of nanofluid flow in microchannels, International Journal of Heat and Fluid Flow, 29(4): 1221–1232, 2008, doi: 10.1016/j.ijheatfluidflow.2008.01.005.

Mahulikar S.P., Herwig H., Theoretical investigation of scaling effects from macro-to-microscale convection due to variations in incompressible fluid properties, Applied Physics Letters, 86(014105): 1–3, 2005.

Makinde O.D., Eegunjobi A.S., Effects of convective heating on entropy generation rate in a channel with permeable walls, Entropy, 15(1): 220–233, 2013, doi: 10.3390/e15010220.

Makinde O.D., Franks O., On MHD unsteady reactive Couette flow with heat transfer and variable properties, Central European Journal of Engineering, 4(1): 54–63, 2014, doi: 10.2478/s13531-013-0139-0.

Makinde O.D., Heat transfer in variable viscosity micro-channel flow of EG-water/Ag nanofluids with convective cooling, Defect and Diffusion Forum, 387: 182–193, 2018, doi: 10.4028/www.scientific.net/DDF.387.182.

Makinde O.D., Kumar K.G., Manjunatha S., Gireesha B.J., Effect of nonlinear thermal radiation on MHD boundary layer flow and melting heat transfer of micro-polar fluid over a stretching surface with fluid particles suspension, Defect and Diffusion Forum, 378: 125–136, 2017, doi: 10.4028/www.scientific.net/DDF.378.125.

Makinde O.D., Ogulu A., The effect of thermal radiation on the heat and mass transfer flow of a variable viscosity fluid past a vertical porous plate permeated by a transverse magnetic field, Chemical Engineering Communications, 195(12): 1575–584, 2008, doi: 10.1080/00986440802115549.

Malvandi A., Ganji D.D., Mixed convection of alumina/water nanofluid in microchannels using modified Buongiorno’s model in presence of heat source/sink, Journal of Applied Fluid Mechanics, 9(5): 2277–2289, 2016, doi: 10.18869/acadpub.jafm.68.236.25641.

Mohammed H.A., Bhaskaran G., Shuaib N.H., Saidur R., Heat transfer and fluid flow characteristics in microchannels heat exchanger using nanofluids: a review, Renewable and Sustainable Energy Reviews, 15(3): 1502–1512, 2011, doi: 10.1016/j.rser.2010.11.031.

Monaledi R.L., Makinde O.D., Entropy analysis of a radiating variable viscosity EG/Ag nanofluid flow in microchannels with buoyancy force and convective cooling, Defect and Diffusion Forum, 378: 273–285, 2018, doi: 10.4028/www.scientific.net/DDF.387.273.

Mostafazadeh A., Toghraie D., Mashayekhi R., Akbari O.A., Effect of radiation on laminar natural convection of nanofluid in a vertical channel with single-and two-phase approaches, Journal of Thermal Analysis and Calorimetry, 138(1): 779–794, 2019, doi: 10.1007/s10973-019-08236-2.

Na N.Y., Computational Methods in Engineering Boundary Value Problems, Academic Press, New York, 1979.

Nguyen Q., Bahrami D., Kalbasi R., Bach Q.-V., Nanofluid flow through microchannel with a triangular corrugated wall: heat transfer enhancement against entropy generation intensification, Mathematical Methods in the Applied Sciences, 1–14, 2020, doi: 10.1002/mma.6705.

Nguyen Q., Sedeh S.N., Toghraie D., Kalbasi R., Karimipour A., Numerical simulation of the ferro-nanofluid flow in a porous ribbed microchannel heat sink: investigation of the first and second laws of thermodynamics with single-phase and two-phase approaches, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(492): 1–14, 2020, doi: 10.1007/s40430-020-02534-9.

Pati S., Kumar V., Effects of temperature-dependent thermophysical properties on hydrodynamic swirl decay in microtubes, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 233(3): 427-435, 2019, doi: 10.1177/0954408918755782.

Pordanjani A.H., Jahanbakhshi A., Nadooshan A.A., Afrand M., Effect of two isothermal obstacles on the natural convection of nanofluid in the presence of magnetic field inside an enclosure with sinusoidal wall temperature distribution, International Journal of Heat and Mass Transfer, 121: 565–578, 2018, doi: 10.1016/j.ijheatmasstransfer.2018.01.019. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.019

Prasad K.V., Vaidya H., Vajravelu K., MHD mixed convection heat transfer in a vertical channel with temperature-dependent transport properties, Journal of Applied Fluid Mechanics, 8(4): 693–701, 2015, doi: 10.18869/acadpub.jafm.67.223.21562.

Rashidi S., Mahaian O., Languri E.M., Applications of nanofluids in condensing and evaporating systems, Journal of Thermal Analysis and Calorimetry, 131(3): 2027–2039, 2018, doi: 10.1007/s10973-017-6773-7.

Rikitu B.H., Makinde O.D., Enyadene L.G., Unsteady mixed convection of a radiating and reacting nanofluid with variable properties in a porous medium microchannel, Archive of Applied Mechanics, 92(1), 92–119, 2022, doi: 10.1007/s00419-021-02043-8.

Rosseland S., Astrophysik aud Atom-Theoretische Grundlagen, Springer, Berlin, 1931, doi: 10.1007/978-3-662-26679-3.

Sheikholeslami M., CuO-water nanofluid free convection in a porous cavity considering Darcy law, The European Physical Journal Plus, 132(55): 1–11, 2017, doi: 10.1140/epjp/i2017-11330-3.

Sindhu S., Gireesha B.J., Heat and mass transfer analysis of chemically reactive tangent hyperbolic fluid in a microchannel, Heat Transfer, 50(2): 1410–1427, 2021, doi: 10.1002/htj.21936.

Snoussi L., Ouerfelli N., Sharma K.V., Vrinceanu N., Chamkha A.J., Guizani A., Numerical simulation of nanofluids for improved cooling efficiency in a 3D copper microchannel heat sink (MCHS), Physics and Chemistry of Liquids: An International Journal, 56(3): 311–331, 2018, doi: 10.1080/00319104.2017.1336237.

Sparrow M., Cess R.D., Radiation Heat Transfer, Augmented Edition, Routledge, Boca Raton, USA, 1978, doi: 10.1201/9780203741382.

Tuckerman D.B., Pease R.F., High performance heat sinking for VLSI, IEEE Electron Device Letter, 2(5): 126–129, 1981, doi: 10.1109/EDL.1981.25367.

Ullah I., Shafie S., Makinde O.D., Khan I., Unsteady MHD Falkner-Skan flow of Casson nanofluid with generative/destructive chemical reaction, Chemical Engineering Science, 172: 694–706, 2017, doi: 10.1016/j.ces.2017.07.011.

Wang X.-Q., Mujumdar A. S., Heat transfer characteristics of nanofluids: a review, International Journal of Thermal Science, 46(1): 1–19, 2007, doi: 10.1016/j.ijthermalsci.2006.06.010.

Yu W., France D.M., Routbort J.L., Choi S.S.U., Review and comparison of nanofluid thermal conductivity and heat transfer enhancements, Heat Transfer Engineering, 29(5): 432–460, 2008, doi: 10.1080/01457630701850851.




DOI: 10.24423/EngTrans.2245.20230213