10.24423/engtrans.213.2007
A Global Oxidation Scheme for Propane-Air Combustion Suitable for Use Into Complex Reacting Flow Computations
References
P.A. Libby and F.A. Williams, Turbulent reacting flows, Abacus Press, New York 1993.
D. Haworth, B. Cuenot, T. Poinsot and R. Blint, Numerical simulation of turbulent propane-air combustion with non-homogeneous reactants, Combustion and Flame, 121, 395–422, 2000.
W.K. Bushe and R.W. Bilger, Direct numerical simulation of turbulent non-premixed combustion with realistic chemistry, Annual Research Briefs, Center for Turbulence Research, NASA Ames/Stanford University, 3–22, 1998.
P. Koutmos, C. Mavridis and D. Papailiou, A study of turbulent diffusion flames formed by planar fuel injection into the wake formation region of a slender square cylinder, Proc. Combust. Inst., 26, 161–168, 1996.
W.H. Green and D.A. Schwer, Adaptive chemistry, Computational Fluid and Solid Mechanics, 32, 1209–1211, 2001.
K.M. Leung, P.R. Lindstedt and W.P. Jones, A simplified reaction mechanism for soot formation in nonpremixed flames, Combust. and Flame, 87, 289–305, 1991.
C. Kennel, J. Gottgens and N. Peters, The basic structure of lean C3H8 flames, Proc. Comb. Inst., 23, 479–485, 1990.
U. Mass and S.B. Pope, Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space, Combustion and Flame, 88, 239–264, 1992.
B. Bedat, F.N Egolfopoulos and T. Poinsot, Direct numerical simulations of heat release and NOX formation in turbulent non-premixed flames, Combustion and Flame, 119, 69–83, 1999.
P.R. Lindstedt, Simplified soot nucleation and surface growth steps for non-premixed flames, [in:] Soot Formation in Combustion, H. Bockhorn [Ed.], pp. 417–429, Springer Verlag, Heidelberg 1994.
H. Bockhorn, F. Mauss, A. Schlegel, S. Buser, and P. Benz, NOx formation in lean premixed noncatalytic and catalytically stabilized combustion of propane, Proc. Combust. Inst., 25, 1019–1026, 1994.
V.R. Katta, L.P. Goss and W.M. Roquemore, Effect of nonunity Lewis number and finite-rate chemistry on the dynamics of a hydrogen-air jet diffusion flame, Combustion and Flame, 96, 60–74, 1994.
R.J. Kee, J.F. Grcar, M.D. Smooke and J.A. Miller, A Fortran program for modeling steady laminar one-dimensional premixed flames, Sandia National Laboratories, Livenmore, C.A., 1985.
H. Tsuji and I. Yamaoka, Structure analysis of counterflow diffusion flames in the forward stagnation region of a porous cylinder, Proc. Combust. Inst., 13, 723–730, 1971.
W.P. Jones and P.R. Lindstedt, The calculation of the structure of laminar counterflow diffusion flames using a global reaction mechanism, Combust. and Flame, 61, 31–49, 1988.
J.A. Wehrmeyer, Z. Cheng, D.M. Mosbacher, R.W. Pitz, and R. Osborne, Opposed jet flames of lean or rich premixed propane-air reactants versus hot products, Combust. and Flame, 128, 232–241, 2002.
S.H. Won, S.H. Chung, M.S. Cha, and B.J. Lee, Lifted flame stabilization in developing and developed regions of coflow jets for highly diluted propane, Proc. Combust. Inst., 28, 2093–2099, 2000.
J.C. Hewson, Pollutant emissions from nonpremixed hydrocarbon flames, PhD. Thesis, University of California, San Diego 1997.
G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eitener et al., GRI-Mech version 3.0, http://www.me.berkeley.edu/gri-mech/
U. Vandsburger, I. Kennedy, and I. Glassman, Soot formation in oxygen enriched counterflow diffusion flames of C2H4 and C3H8, Combust. Sci. and Technol., 39, 263–285, 1984.
C.K. Law, R.L. Axelbaum, and W.L. Flower, Preferential diffusion and concentration modification in sooting counterflow diffusion flames, Proc. Combust. Inst., 22, 379–386, 1988.
DOI: 10.24423/engtrans.213.2007