Engineering Transactions, 67, 3, pp. 311–331, 2019
10.24423/EngTrans.1005.20190815

Comparison Between Numerical Analysis and Actual Results for a Pull-Out Test

Jakub GONTARZ
Lublin University of Technology
Poland

Jerzy PODGÓRSKI
Lublin University of Technology
Poland

Józef JONAK
Lublin University of Technology
Poland

Marek KALITA
KOMAG Institute of Mining Technology
Poland

Michał SIEGMUND
KOMAG Institute of Mining Technology
Poland

The paper describes a computer analysis of the pull-out test used to determine the force needed to pull out a fragment of rock and the shape of this broken fragment. The analyzed material is sandstone and porphyry. The analysis included a comparison of different methods of propagation of cracks in the Abaqus computer program using the Finite Element Method. The work also contains a description of laboratory tests and analytical considerations.
Keywords: pull-out test; rock mechanics; fracture mechanics; numerical modeling of fracture
Full Text: PDF
Copyright © The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

References

European Technical Assessment ETA-99/0009 of 06/01/2015 for Hilti HDA and HDA-R anchor.

Contrafatto L., Cosenza R., Behaviour of post-installed adhesive anchors in natural stone, Construction and Building Materials, 68: 355–369, 2014, doi: 10.1016/j.conbuildmat.2014.05.099.

Upadhyaya P., Kumar S., Pull-out capacity of adhesive anchors: An analytical solution, International Journal of Adhesion and Adhesives, 60: 54–62, 2015, doi: 10.1016/j.ijadhadh.2015.03.006.

Tistel J., Grimstad G., Eiksund G., Testing and modeling of cyclically loaded rock anchors, Journal of Rock Mechanics and Geotechnical Engineering, 9(6): 1010–1030, 2017, doi: 10.1016/j.jrmge.2017.07.005.

Barenblatt G.I., The mathematical theory of equilibrium of crack in brittle fracture, Advances in Applied Mechanics, 7: 55–129, 1962, doi: 10.1016/S0065-2156(08)70121-2.

Bower A.F., Applied mechanics of solids, CRC Press, 2010.

Elices M., Guinea G.V.G., Gómez J., Planas J., Gomez J., The cohesive zone model: advantages, limitations and challenges, Engineering Fracture Mechanics, 69(2): 137–163, 2002.

Brown W.F., Srawley J.E., Plane Strain Crack Toughness Testing of High Strength Metallic Materials, Philadelphia: ASTM International, 1966.

van Mier J.G.M., Fracture processes of concrete, CRC Press, 1996.

Hasanpour R., Choupani N., Mixed-mode study of rock fracture mechanics by using the modified arcan specimen test, International Journal of Geotechnical and Geological Engineering, 2(5): 716–721, 2008.

Gontarz J., Podgórski J., Explanation of the mechanism of destruction of the cylindrical sample in the Brazilian test, [in:] Advances in mechanics : theoretical, computational and interdisciplinary issue, [Eds: Kleiber M., Burczyński T., Wilde K., Górski J., Winkelmann K., Smakosz Ł.] ,pp. 479–483, Boca Raton, Gdańsk 2016,

Goodier J.N., Compression of rectangular blocks, and the bending of beams by non-linear distributions of bending forces, J. Appl. Mech., 54(18): 173–183, 1932.

Mohammadi S., Extended finite element method: for fracture analysis of structures, Wiey-Blackwell, 2008.

Jirasek M., Zimmermann T., Embedded crack model. Part II: Combination with smeared cracks, International Journal for Numerical Methods in Engineering, 50(6): 1291–1305, 2001, doi: 10.1002/1097-0207(20010228)50:6<1291::AID-NME12>3.0.CO;2-Q.

Tejchman J., Bobiński J., Continuous and discontinuous modelling of fracture in concrete using FEM, Springer-Verlag, 2013, doi: 10.1007/978-3-642-28463-2.

Abaqus V 6.14.2 Users Manual, 2014.

Bazant Z. P., Kazemi M. T., Hasegawa T., Mazars J., Size effect in Brazilian split-cylinder tests. Measurements and fracture analysis, ACI Materials Journal, 88(3): 325–332, 1991.

Podgórski J., The criterion for determining the direction of crack propagation in a random pattern composites, Meccanica, 52(8): 1923–1934, 2017, doi: 10.1007/s11012-016-0523-y.




DOI: 10.24423/EngTrans.1005.20190815