10.24423/EngTrans.983.20190301
Virtual Additive Manufacturing Based on Semicrystalline Polymer Polyetheretherketone (PEEK)
The presented investigations describe the dual crystallization kinetics model for considered high temperature thermoplastic material Polyetheretherketone (PEEK). Furthermore, it is shown how to analyse the overall process with use of Abaqus/SIMULIA software. The innovation of the presented approach lies in the proper interpreting of the G-Code from Computeraided manufacturing software (CAM), which is an input for the real machines dedicated to AM. The path (coordinates of discrete points) and time of particular steps of the manufacturing process are extracted from the G-Code and are included as input parameters in the simulation code. The discretized part is simplification of the Computer-aided design (CAD) geometry. The final results show the effect implemented in user subroutines. Additionally, Differential Scanning Calorimetry (DSC) test results are presented in order to calculate crystallization and melting parameters.
The presented work is the basis of the following investigations covering prediction of residual stresses, volumetric shrinkage and deformations.
References
Velisaris C., Seferis J., Crystallization kinetics of polyetheretherketone (PEEK) matrices, Polymer Engineering and Science, 26(22): 1574–1580, 1986.
Brenken B., Barocio E., Favaloro A.J., Byron Pipes R., Simulation of semi-crystalline composites in the extrusion deposition additive manufacturing process, Science in the Age of Experience, pp. 90–102, Chicago, IL, 2017.
Favaloro A.J., Brenken B., Barocio E., Byron Pipes R., Simulation of polymeric composites additive manufacturing using Abaqus, Science in the Age of Experience, pp. 103–114, Chicago, IL, 2017.
Schultz J.M., Polymer Crystallization. The development of crystalline order in thermoplastic polymers, Oxford University Press, 2001.
Amado A., Wegener K., Schmid M., Levy G., Characterization and modelling of non-isothermal crystallization of Polyamide 12 and co-Polypropylene during the SLS process, 5th International Polymers & Moulds Innovations Conference, Ghent, 2012.
Greco A., Maffezzoli A., Statistical and Kinetic Approaches for Linear Low-Density Polyethylene Melting Modeling, Applied Polymer Science, 89: 289–295, 2013.
van Krevelen D.W, Te Nijenhius K., Properties of polymers, Elsevier, 4th, completely revised edition, 2009.
Tierney J.J., Gillespie J.W., Jr., Crystallization kinetics behavior of PEEK based composites exposed to high heating and cooling rates, Composites Part A – Applied Science and Manufacturing, 35: 547–558, 2004.
Jarecki L., Misztal-Faraj B., Kinetic model of polymer crystallization with the lamellar thickness distribution, European Polymer Journal, 73: 175–190, 2015.
DOI: 10.24423/EngTrans.983.20190301