10.24423/engtrans.727.2016
On the Static Nature of Minimal Kinematic Boundary Conditions for Computational Homogenisation
References
Feyel F., A multilevel finite element method (FE 2) to describe the response of highly non-linear structures using generalized continua, Computer Methods in Applied Mechanics and Engineering, 192(28–30), 3233–3244, 2003. doi: 10.1016/S0045-7825(03)00348-7.
Kousnetsova V.G., Geers M.G.D, Brekelmans W.A.M., Computational homogenisation for non-linear heterogeneous solids, [in:] Multiscale Modeling in Solid Mechanics. Computational Approaches, Galvanetto U., Ferri Aliabadi M.H. (Eds.), Computational and Experimental Methods in Structures, Vol. 3, Imperial College Press, London, pp. 1–42, 2009.
Mesarovic S.D., Padbidri J., Minimal kinematic boundary conditions for simulations of disordered microstructures, Philosophical Magazine, 85(1), 65–78, 2005, doi: 10.1080/14786430412331313321.
Inglis H.M., Geubelle P.H., Matouš K., Boundary condition effects on multiscale analysis of damage localization, Philosophical Magazine, 88(16), 2373–2397, 2008, doi: 10.1080/14786430802345645.
Jänicke R., Steeb H., Minimal loading conditions for higher-order numerical homogenisation schemes, Archive of Applied Mechanics, 82(8), 1075–1088, 2012, doi:10.1007/s00419-012-0614-8.
Wojciechowski M., Numerical homogenisation of permeability coefficient for Darcy flow in porous media, Proceedings of 3rd Polish Congress of Mechanics & 21st Computer Methods in Mechanics, September 8–11, 2015, Gdańsk, Poland, vol. 1, pp. 101–102, 2015.
Nguyen V.-D., Béchet E., Geuzaine C., Noels L., Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation, Computational Materials Science, 55, 390–406, 2012, doi: 10.1016/j.commatsci.2011.10.017.
Wojciechowski M., Fempy – finite element method in Python, http://fempy.org, http://geotech.p.lodz.pl:5080/fempy, last access: October 2016.
DOI: 10.24423/engtrans.727.2016