Engineering Transactions, 49, 2-3, pp. 135–153, 2001
10.24423/engtrans.550.2001

Torsional Rigidities of Cancellous Bone Filled with Marrow: The Application of Multipoint Pads Approximants

S. Tokarzewski
Institute of Fundamental Technological Research Polish Academy of Sciences
Poland

J.J. Telega
Institute of Fundamental Technological Research Polish Academy of Sciences
Poland

A. Gałka
Institute of Fundamental Technological Research Polish Academy of Sciences
Poland

An idealized model of prism-like trabecular bone was developed to study its static and dynamic responses under torsional moments. Effects of bone marrow and bone apparent density were investigated. By constructing multipoint Pade approximants [1, 2] to the torsional complex modulus, hydraulic stiffening of the prism-like bone due to the presence of bone marrow was predicted. The torsional compliance, creep function and relaxation function were also evaluated.
Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

G.A. BAKER, Best error bounds for Padé approximants to convergent series of Stieltjes, J. Math. Phys., 10, 814–820, 1969.

G A. BAKER, P. GRAVES-MORRIS, Padé Approximants, Second Edition, GIAN-CARLO ROTA, [Eds.], [In:] Encyclopedia of Mathematics and its Applications, 59, Cambridge University Press, Cambridge 1996.

G.S. BEAUPRE, W.C. HAYES, Finite element analysis of a three dimensional opened-celled model for trabecular bone, J. Biomech. Engng., 107, 249-256, 1985.

A. BENSOUSSAN, J.L. LIONS, G. PAPANICOULAOU, Asymptotic analysis for periodic structures, North-Holland, Amsterdam 1978.

D.R. CARTER, W.C. HAYES, The compressive behaviour of bone as a two-phase porous structure, J. Bone Jt. Surg., 59A, 954–962, 1977.

R.M. CHRISTENSEN, Mechanics of composite materials, John Wiley & Sons, New York 1979.

D. CIORANESCU, J. SAINT JEAN PAULIN, Homogenization of reticulated structures, Springer Verlag, New York 1999.

D. CIORANESCU, J. SAINT JEAN PAULIN, Asymptotic analysis of elastic wireworks, Laboratoire d'analyse numerique, R89008, Universite Paris 1989.

N.L. FAZZALARI, J. DARRACOTT, B. VERNON-ROBERTS, Histomorphometric changes in the trabecular structure of a selected stress region in the femur in patiens with osteoarthritis and fracture of the femoral neck, Bone, 6, 125–133, 1985.

J.L. GIBSON, The mechanical behaviour of cancellous bone, J. Biomechanics, 18, 317–328, 1985.

L.J. GIBSON, M.F. ASHBY, Cellular solids: structure and properties, Pergamon Press, New York 1988.

K. GOLDEN and G. PAPANICOLAOU, Bounds for effective parameters of heterogeneous media by analytic continuation, Comm. Math. Phys., 90, 473–491, 1983.

X.E. Guo, T.A. MCMAHON, T.M. KEAVENY, W.C. HAYES, L. GIBSON, Finite modelling damage accumulation in trabecular bone under cycling loading, J. Biomechanics, 27, 145–155, 1994.

T.P. HARRIGAN, M. JASNY, R.W. MANN, W.H. HARRIS, Limitation of the continuum assumption in cancellous bone, J. Biomechanics, 21, 269–275, 1988.

S.J. HOLLISTER, D.P. FYHIRE, K.J. JEPSEN, S.A. GOLDSTEIN, Application of homogenization theory to the study of trabecular bone mechanics, J. Biomechanics, 24, 825–839, 1991.

M. KASRA, M.D. GRYNPAS, Static and dynamic finite element analyses of an idealized structural model of vertebral trabecular bone, J. Biomech. Engng., 120, 267–272, 1998.

R.B. MARTIN, D.B. BURR, N.A. SHARKEY, Skeletal Tissue Mechanics, Springer-Verlag, New York 1998.

J. MCELHANEY, N. ALEM, V. ROBERTS, A porous block model for cancellous bones, ASME Publication No 70-WA/BHF-2, 1–9, 1970.

N.I. MUSHELISHVILI, Some basic problems of mathematical theory of elasticity [in Russian], Nauka, Moskva 1966.

R. MOLLER, P. ROEGSEGGER, Micro-tomographic imaging for the nondestructive evaluation of trabecular bone architecture, [In:] Bone Research in Biomechanics, G. LOWET, P. RCJEGSEGGER, H. WEINANS and A. MEUNIER [Eds.], 61–79, IOS Press, Amsterdam 1997.

J.A. OCHOA, D.A. HECK, K.D. BRANDT, B.M. HILLBERRY, The effect of intertrabecular fluid on femoral head mechanics, J. of Reumatology, 18, 580–584, 1991.

J. SAINT, J. PAULIN, Développement asymptotique et calcul de correcteures pour la torsion élastique d'arbres à cavitès cylindriques, Report No 78021, Analyse Numèrique Universite Pierre et Marie Curie, 1978.

W.T. PERRINS, D.R. MCKENZIE, R.C. MC PHEDRAN, Transport properties of regular array of cylinders, Proc. R. Soc. Lond., A 369, 207–225, 1979.

J.W. PUGH, R.M. ROSE, E.L. RADIN, A structural model for the mechanical behavior of trabecular bone, J. Biomechanics, 6, 657–670, 1973.

E. SANCHEZ-PALENCIA, Non-homogeneous media and vibration theory, Springer, Berlin 1980.

M. TAVASSOLI, J.M. YOFFEY, Bone marrow: structure and function, Alan R. Liss, New York 1983.

J. TELEGA, A. GALKA, S. TOKARZEWSKI, Effective moduli of trabecular bone, Acta Bioeng. Biomech., 1, 53–57, 1999.

J.J. TELEGA, A. GALKA, S. TOKARZEWSKI, Application of the reiterated homogenization to determination of effective moduli of a compact bone, J. Theor. Appl. Mech., 37, 687–706, 1999.

J.J. TELEGA, T. LEKSZYCKI, Progress in functional adaptation of tissues and remodelling, Part I. Bone structure, its properties and models, Engng. Trans., (in preparation).

S. TOKARZEWSKI, N-point Padé approximants to real-valued Stieltjes series with nonzero radii of convergence, J. Comp. Appl. Math., 75, 259–280, 1996.

S. TOKARZEWSKI and J.J. TELEGA, S-continued fraction method for the investigation of a complex dielectric constant of two-phase composite, Acta Appl. Math., 49, 55–83, 1997.

S. TOKARZEWSKI, J.J. TELEGA, Bounds on efffective moduli by analytical continuation of the Stieltjes function expanded at zero and infinity, Z. angew. Math. Phys., 48, 1–20, 1997.

S. TOKARZEWSKI, J.J. TELEGA, A. GALKA, A contribution to evaluation of effective moduli of trabecular bone with rod-like microstructure, J. Theor. Appl. Mech., 37, 3, 707–728, 1999.

R.S. WEINSTEIN, M.S. HUTSON, Decreased trabecular width and increased trabecular spacing contribute to loss with aging, Bone, 8, 137–142, 1987.

J.L. WILLIAMS, J.L. LEWIS, Properties and anisotropic model of cancellous bone from the proximal tibia epiphysis, J. Biomech. Engng., 104, 50–56, 1982.




DOI: 10.24423/engtrans.550.2001