10.24423/engtrans.379.2016
A Study of the Ballistic Limit of AA2024-T351 Sheets Impacted by Spherical and Cubical Compact Projectiles
References
Arias A., Rodríguez-Martínez J.A., Rusinek A., Numerical simulations of impact behaviour of thin steel plates subjected to cylindrical, conical and hemispherical nondeformable projectiles, Engineering Fracture Mechanics, 75(6): 1635–1656, 2008,
http://www.sciencedirect.com/science/article/pii/S0013794407002767.
Barlat F., Lege D.J., Brem J.C., A six-component yield function for anisotropic materials, International Journal of Plasticity, 7: 693–712, 1991,
http://www.sciencedirect.com/science/article/pii/074964199190052Z.
Buyuk M., Loikkanen M., Kan C.S., A computational and experimental analysis of ballistic impact to sheet metal aircraft structures, 5th Europe LS-DYNA Users Conference, 2005.
Børvik T., Hopperstad O.S., Pedersen K.O., Quasi-brittle fracture during structural impact of AA7075-T651 aluminium plates, International Journal of Impact Engineering, 37(5): 537–551, 2010,
http://www.sciencedirect.com/science/article/pii/S0734743X09001924.
Erice B., Pérez-Martín M.J., Gálvez F., An experimental and numerical study of ductile failure under quasi-static and impact loadings of Inconel 718 nickel-base superalloy, International Journal of Impact Engineering, 69: 11–24, 2014,
http://www.sciencedirect.com/science/article/pii/S0734743X14000384.
Gupta N.K., Iqbal M.A., Sekhon G.S., Effect of projectile nose shape, impact velocity and target thickness on the deformation behavior of layered plates, International Journal of Impact Engineering, 35(1): 37–60, 2008,
http://www.sciencedirect.com/science/article/pii/S0734743X06003186.
Gupta N.K., Iqbal M.A., Sekhon G.S., Effect of projectile nose shape, impact velocity and target thickness on deformation behavior of aluminum plates, International Journal of Solids and Structures, 44(10): 3411–3439, 2007,
http://www.sciencedirect.com/science/article/pii/S0020768306004045.
Hypermesh, http://www.altairhyperworks.co.uk, accessed online 14/08/2015.
Iqbal M.A., Tiwari G., Gupta P.K., Bhargava P., Ballistic performance and energy absorption characteristics of thin aluminium plates, International Journal of Impact Engineering, 77: 1–15, 2015,
http://www.sciencedirect.com/science/article/pii/S0734743X1400253X.
Jankowiak T., Rusinek A., Wood P., A numerical analysis of the dynamic behaviour of sheet steel perforated by a conical projectile under ballistic conditions, Finite Elements in Analysis and Design, 65: 39–49, 2013,
http://www.sciencedirect.com/science/article/pii/S0168874X12001989.
Jordan J.B., Naito C.J., An experimental investigation of the effect of nose shape on fragments penetrating GFRP, International Journal of Impact Engineering, 63: 63–71, 2014, http://www.sciencedirect.com/science/article/pii/S0734743X13001577.
Kelley S., Johnson G., Statistical testing of aircraft materials for transport airplane rotor burst fragment shielding, Report for U.S. Department of Transportation Federal Aviation Administration, Report no. DOT/FAA/AR-06/9, May 2006,
http://www.tc.faa.gov/its/worldpac/techrpt/AR06-9.pdf.
LS-DYNA Keyword User’s Manual, Vol. I–II, Livermore Software Technology Corporation (LSTC), 2013.
Rusinek A., Rodríguez-Martínez J.A., Arias A., Klepaczko J.R., López-Puente J., Influence of conical projectile diameter on perpendicular impact of thin steel plate, Engineering Fracture Mechanics, 75(10): 2946–2967, 2008,
http://www.sciencedirect.com/science/article/pii/S0013794408000143.
Rodríguez-Millán M., Vaz-Romero A., Rusinek A., Rodríguez-Martínez J.A., Arias A., Experimental study on the perforation process of 5754-H111 and 6082-T6 aluminium plates subjected to normal impact by conical, hemispherical and blunt projectiles, Experimental Mechanics, 54(5): 729–742, 2014,
http://link.springer.com/article/10.1007%2Fs11340-013-9829-z#/page-1.
Tiwari G., Iqbal M.A., Gupta P.K., Gupta N.K., The ballistic resistance of thin aluminium plates with varying degrees of fixity along the circumference, International Journal of Impact Engineering, 74: 46–56, December 2014,
http://www.sciencedirect.com/science/article/pii/S0734743X14000220.
Seidt J.D., Michael Pereira J., Gilat A., Revilock D.M., Nandwana K., Ballistic impact of anisotropic 2024 aluminum sheet and plate, International Journal of Impact Engineering, 62: 27–34, 2013,
http://www.sciencedirect.com/science/article/pii/S0734743X13001152.
Senthil K., Iqbal M.A., Effect of projectile diameter on ballistic resistance and failure mechanism of single and layered aluminum plates, Theoretical and Applied Fracture Mechanics, 66–67: 53–64, 2013,
http://www.sciencedirect.com/science/article/pii/S016784421300089X.
Woodward R.L., The interrelation of failure modes observed in the penetration of metallic targets, International Journal of Impact Engineering, 2(2): 121–129, 1984,
http://www.sciencedirect.com/science/article/pii/0734743X84900010.
DOI: 10.24423/engtrans.379.2016