Engineering Transactions, 65, 3, pp. 499–511, 2017
10.24423/engtrans.378.2017

Strain Energy Method for Determining Dynamic Yield Stress in Taylor’s Test

Edward WŁODARCZYK
Military University of Technology
Poland

This paper presents a theoretical method for determining dynamic yield stress of metals. The method is based on conversion of the part initial kinetic energy of a metal rod striking a rigid target into the energy of elastic and plastic-strain deformation at selected period ts. By means of this method, a theoretical simple algebraic formula has been derived for determining the dynamic yield stress of metals loaded by the Taylor direct impact experiment (Taylor DIE). This formula gives the results comparable with experimental data.
Keywords: dynamic plasticity; dynamic yield stress; impact loading, Taylor's experiment
Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

Taylor G.I., The use of flat-ended projectiles for determining dynamic yield stress. I. Theoretical considerations, Proceedings of the Royal Society of London, Series A, 194(1038): 289–299, 1948, doi: 10.1098/rspa.1948.0081.

Whiffin A.C., The use of flat-ended projectiles for determining dynamic yield stress. II. Tests on various metallic materials, Proceedings of the Royal Society of London, Series A, 194(1038): 300–322, 1948, doi: 10.1098/rspa.1948.0082.

Lee E.H., Tupper S.J., Analysis of plastic deformation in a steel cylinder striking a rigid target, Journal of Applied Mechanics, Transactions of ASME, 21: 63–70, 1954.

Hawkyard J.B., Eaton D., Johnson W., The mean dynamic yield strength of copper and low carbon steel at elevated temperatures from measurements of the mushrooming of flat-ended projectiles, International Journal of Mechanical Sciences, 10(12): 929–948, 1968, doi: 10.1016/0020-7403(68)90048-9.

Hawkyard J.B., A theory for the mushrooming of flat-ended projectiles impinging on a flat rigid anvil, using energy consideration, International Journal of Mechanical Sciences, 11(3): 313–333 1969, doi: 10.1016/0020-7403(69)90049-6.

Jones S.E., Muadlin P.J., Foster J.C., An engineering analysis of plastic wave propagation in the Taylor test, International Journal of Impact Engineering, 19(2): 95–106, 1997, doi: 10.1016/S0734-743X(96)00020-6.

Lu G., Wang B., Zhang T., Taylor impact test for ductile porous materials – Part1: theory, International Journal of Impact Engineering, 25(10): 981–991, 2001, doi: 10.1016/S0734-743X(01)00027-6.

Wang B., Zhang T., Lu G., Taylor impact test for ductile porous materials – Part 2: experiments, International Journal of Impact Engineering, 28(5): 499–511, 2003, doi: 10.1016/S0734-743X(02)00105-7.

Zhang E., Wang B., On the compressive behavior of sintered porous coppers with low to medium porosities – Part 1: Experimental study, International Journal of Mechanical Sciences, 47(4–5): 744–756, 2005, doi: 10.1016/j.ijmecsci.2004.12.011.

Włodarczyk E., Sarzyński M., Analysis of dynamic parameters in a metal cylindrical rod striking a rigid target, Journal of Theoretical and Applied Mechanics (JTAM), 51(4): 847–857, 2013.

Janiszewski J., Engineering materials testing in conditions of dynamic load [in Polish], WAT, Warsaw, 2012.

Włodarczyk E., Sarzyński M., Experimental analysis of density and compressive strain of porous metal with the use of Taylor test, Archives of Mechanics, 66(4): 245–256, 2014.

Rakhmatulin H.A., Demianov Yu. A., Strength under intensive momentary loads [in Russian], Moscow, 1961.

Cristescu N., Dynamic plasticity, North – Holland Publishing Company, Amsterdam 1967.

Włodarczyk E., Terminal ballistics of bullets [in Polish], WAT, Warsaw, 2006.

Kolsky H., Douch L.S., Experimental studies in plastic wave propagation, Journal of the Mechanics and Physics of Solids, 10(3): 195–223, 1962, doi: 10.1016/0022-5096(62)90038-8.

Zukas J.A., Nicholas T., Swift H.F., Greszczuk L.B., Curran D.R., Impact dynamics, Wiley, New York, 1982.

Higashi K., Mukai T., Kaizu K., Tsuchida S., Tanimura S., The microstructural evolution during deformation under several strain rates in a commercial 5182 aluminum alloy, Journal de Physique IV France, 01(C3): C3-347 - C3-352, 1991, doi: 10.1051/jp4:1991350.

Zukas J.A., High Velocity Impact Dynamics, Wiley, New York, 1990.

Julien R., Jankowiak T., Rusinek A., Wood P., Taylor’s test technique for dynamic characterization of materials: application to brass, Experimental Techniques, 40(1): 347–355, 2016.




DOI: 10.24423/engtrans.378.2017