Engineering Transactions, 14, 1, pp. 117–123, 1966

Równania różniczkowe filtracji cieczy niejednorodnych

Czesław GRABARCZYK

Poland

Differential equation of filtration of a nonhomogeneous liquid

General differential equation is derived, with certain assumptions, for the distribution of satura­tion in the transition zone during an expulsion process of a liquid by another one in a homogeneous porous body, taking into consideration the capillary pressure and the influence of gravity forces.

It is shown that the equations known from the literature are particular cases of the equation derived. The general solution is reduced to the canonical form and completed with the initial and boundary conditions of the physical problem under consideration.

Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

I. L. A. R Apoport, W. J. Leas, Properties of linear water floods, Trans. AIME, 198 (1953), 139.

2. S. E. Buckley, M. C. Leverett, Mechanism of fluid displacement in sands, Trans. AIME, 146 (1942), 107.

В. М. Рыжик, О капиллярной пропитке водой нефтенасьпцеиного гидрофилного пласта, Изв. АН СССР, ОТН, Мех. и мамин., 2, 1960.

Чоу-Юуй-лин, Краевые Задачи для нелинейных параболических уравнений, Мат. С6., том 47, пр 4, 1959.

В. Вазов, Дз. Форсаит, Разностные методы решения дифференциальны х уравнений в частных производных, Перевод с англ. Б. М. Будака и Н. П. Жидкова, Москва 1963.

И. С. Березин, Н. П. Жндков, Методы вычислений, т. П, Москва 1959.

J. Douglas, On the numerical integration of quasi-linear parabolic differential equations, Pac. J. Math., 6 (1956).

J. Douglas, The Applicalion of stability analysis in the numerical solution of quasi-linear parabolic differential equations, Trans. AMS, 2, 89 (1958).

Б. М. Будак, О методе прямых для некоторых квазилинейных краевых задач параболае¬ческого тина, ЗВМиМФ, б, 1 (1961).