O pewnej przybliżonej teorii zginania i skręcania prętów prostych o przekroju pełnym
An approximate theory of bending and torsion of straight solid bars
An approximate theory of bending, shear and torsion of straight bars of constant arbitrary cross-sections is developed, solid bars being discussed as well as thin-walled bars, independently of the degree of symmetry of the cross-section. The inaccuracies of the theory are chiefly due to the following two simplifying assumptions: (1) the warping of the crosssections is uniform along the axis of the bar, (2) the cross-sections behave as rigid in their planes. The first assumption signifies that bending by terminal loads is considered instead of pure bending (treated in Strength of Materials). The second is the tacit assumption of Strength of Materials and leads to discrepancies with Saint-Venant's theory of bending, the accordance with his theory of torsion being preserved, however. The assumption that in the theory of shear Poisson' s ratio is equal to zero results, in some cases, in considerable errors, which should be remembered when this theory is being applied.
Assuming the structure to be transversally-isotropic, Eqs. (2.3), we obtain, from the basic relations(2.1), the equations for stresses (2.4) under the assumption of v = v' = 0. The first of these equations can easily be transformed into (2.11). The equation (2.12) for unit angle of twist can be obtained in an equally easy manner. Next, the problem of simple bending (υ = 0) is discussed in the case where the warping function satisfies Poisson's equation (3.2). The coordinates of the centre of shear are determined by the general equations (3.9). It can be verified that for v = 0, the function Φ proposed by Leibenzon, [12], becomes our warping function ws.
The cases of circular, elliptic and rectangular bars subjected to shear with the force Qy are considered as well as a bar of narrow, symmetrical cross-section (Fig. 6).
References
I.S. Sokolnikoff, Mathematical Theory of Elasticity, New YorkLondyn 1946.
N. V. Zoliński i i P.M. Riz, Torsion eines zylindrischen Stabes durch Kräfte die auf seiner Seitenfäche verteilt sind, Izw. AN ZSRR 10 (1939), (ros.).
P.M. Riz, Concerning the Torsion of a Prismatic Bar by Axial Forces Distributed along its Side Surfaces, Prikłd. Mat. Miech., t. 4, 2 (1940), (ros.).
N.I. Muschieliszwili, K zadacze kruczenja i izgiba uprugich brusiew sostawlennych iz razlicznych matieriałow, Izw. AN ZSSR 7 (1932).
S.G. Lechnicki, Niekotoryje słuczai uprugowo rawnowiesja odnorodnowo cilindra s proizwolnoj anizotropiej, Prikl. Mat. Miech., t. 2, 3, (1939).
C.F.F. Platrier, Generalisations du probleme de Saint-Venant, Proc. Fifth Int. Congr. Appl. Mech. 1939.
A. i L. Föppl, Drang und Zwang, Monachium-Berlin, t. 2, 1944.
.S. P. Timoshenko i J.N. Goodier, Theory of Elasticity, New YorkToronto-Londyn 1951.
J. Nowiński, Skręcanie pręta prostopadłosciennego, którego jeden przekrój pozostaje płaski, Arch. Mech. Stos. 1 (1953).
A.C. Stevenson, Flexure with Shear and Associated Torsion in Prisms of Uni-axial and Asymmetric Cross-Sections, Phil. Trans. Roy. Soc., ser. A, t. 237, 1938-1939.
R. M. Morris, Some General Solutions of St. Venant's Flexure and Torsion Problem (I) Proc. Lond. Math. Soc., SET. 2, t. 46, 1940.
L.S. Lejbienzon, Wariacjonnyje mietody rieszenja zadacz tieorji uprugosti, Sobr. trudow, t. 1, Moskwa 1951.
L.S. Lejbienzon, Kurs tieorji uprugosti, Moskwa-Leningrad 1947.
J. Nowiński, Oś skręcenia w przypadku czystego skręcania prętów prostych, Arch. Meeh. Stos. 1 (1950).
J. Nowiński, O zginaniu nierównomiernym prętów prostych, Arch. Meeh. Stos. 2 (1950).
J. Nowiński, O pewnej metodzie obliczenia cienkościennych dźwigarów wspornikowych osadzonych swobodnie, Biul. Inst. Techn. Lotn. 4 (1947).
J. Nowiński, Zginanie i skręcanie prętów o przekroju pelnym osadzonych .swobodnie; Biul. lust. Teehn. Lotn. 4 (1947).
J. Nowiński, Teoria dźwigarów cienkościennych zbieżnych, Prace Gł. Inst. Lotn. 1 (1951).
S. G. Leehnieoki, Tieorja uprugosti anizotropnowo tiela, Moskwa-Leningrad 1950.
N.M. Bie1ajew, Wytrzymałość materiałów, tlum. polsk. S. Kaliskiego, Warszawa 1954.
H.J. Plass, An Approximate Nonuniform Bending Theory and Its Application to the Swept-Plate Problem, Journ. Ajppl. Meeh. 3 (1955).
J. Nowiński, Z teorii dźwigarów cienkościennych o przekroju otwartym obciążonych równomiernie, Rozpr. Matem. I (1952).