O Pewnym Zastosowaniu Transformacji Laplace'a przy Wyznaczaniu Ugięcia Łuków
In both cases the Laplace transformation can be used to obtain the so-called general equations for arch deflection, (31) and (48) respectively. In these equations the load is assumed to be composed of continuously distributed forces (uniformly, for instance) and concentrated forces and moments. A numerical example is presented of a doubly hinged arch subjected to a concentrated force acting at the key. The deflection at the point of action of the force is equal to 0,46 cm if Eq. (35) derived for more rigid arches is used. The more accurate Eq. (51) leads to the maximum deflection which is equal to 0,96 cm (See [4]).
References
W. Wierzbicki, Mechanika budowli, wyd. 4, Warszawa 1949.
J. Naleszkiewicz, On the Cooperation of Two Cantilever Spars with a Shear Resisting Skin, Arch. Mech. Stos. 2 (1949).
A. Strassner, Neuere Methoden zur Statik der Rahmentragwerke, t. 2, Berlin 1921.
B. Fritz, Theorie und Berechnung vollwandiger Bogentrüger, Berlin 1934.
T. Iwiński, O zastosowaniu transformacji Laplace'a do zagadnień statyki budowli, Arch. Mech. Stos. 1 (1953).
T. Iwiński J. Nowiński, O transformatach niektórych równań różniczkowych statyki budowli, Arch. Mech. Stos. 2 (1954).
O. Henkel, Graphische Statik, t. 2, Berlin i Lipsk 1922,
I.N.Bronsztiejn i K.A.Siemiendiajew, Sprawocznik po
matiematikie, OGIZ, 1948.