10.24423/engtrans.277.2014
Governing Differential Equations for the Mechanics of Undamageable Materials
References
Arruda E.M., Boyce M.C., A Three-Dimensional Constitutive Model for the Large Stretch Behavior of Rubber Elastic Materials, Journal of the Mechanics and Physics of Solids, Vol. 41, 2, 389–412, 1993.
Castelvecchi D., Glass-like Metal Performs Better Under Stress, Physical Review Focus, 15, 20, 1103/PhysRevFocus.15.20, 2005.
Celentano D.J., Tapia P.E., Chaboche J-L., Experimental and Numerical Characterization of Damage Evolution in Steels, Mecanica Computacional, Vol. XXIII, (edited by G. Buscaglia, E. Dari, O. Zamonsky), Bariloche, Argentina, 2004.
Corless R.M., Gonnet G.H, Hare D.E.G., Jeffrey D.J., Knuth E.E., On the Lambert W Function, Advances in Computational Mathematics, 5, 329–359, 1996.
Das J., Tang M.B., Kim K.B., Theissmann R., Baier F., Wang W.H., Eckert J., Work-Hardenable” Ductile Bulk Metallic Glass, Physical Review Letters, 94, 205501, DOI: 1103/PhysRevLett.94.205501, 2005.
Doghri I., Mechanics of Deformable Solids: Linear and Nonlinear, Analytical and Computational Aspects, Springer-Verlag, Germany, 2000.
Fung Y.C., Elasticity of Soft Tissues in Simple Elongation, American Journal of Physiology, 213, 6, 1432–1544, 1967.
Fung Y.C., Biomechanics: Mechanical Properties of living Tissues, Second Edition, Springer, 1993.
Hansen N.R., Schreyer H.L., A Thermodynamically Consistent Framework for The ories of Elastoplasticity Coupled with Damage, International Journal of Solids and Strucutres, 31, 3, 359–389, 1994.
Kachanov L., On the Creep Fracture Time [in Russian], Izv Akad, Nauk USSR Otd Tech., 8, 26–31, 1958.
Kattan P.I., Voyiadjis G.Z., A Coupled Theory of Damage Mechanics and Finite Strain Elasto-Plasticity – Part I: Damage and Elastic Deformations, International Journal of Engineering Science, 28, 5, 421–435, 1990.
Kattan P.I., Voyiadjis G.Z., A Plasticity-Damage Theory for Large Deformation of Solids – Part II: Applications to Finite Simple Shear, International Journal of Engineering Science, 31, 1, 183–199, 1993.
Kattan P.I., Voyiadjis G.Z., Decomposition of Damage Tensor in Continuum Damage Mechanics, Journal of Engineering Mechanics, ASCE, 127, 9, 940–944, 2001.
Kattan P.I., Voyiadjis G.Z., Damage Mechanics with Finite Elements: Practical Ap plications with Computer Tools, Springer-Verlag, Germany, 2001.
Ladeveze P., Poss M., Proslier L., Damage and Fracture of Tridirectional Compos ites, [in:] Progress in Science and Engineering of Composites. Proceedings of the Fourth International Conference on Composite Materials, Japan Society for Composite Materials, 1, 649–658, 1982.
Ladeveze P., Lemaitre J., Damage Effective Stress in Quasi-Unilateral Conditions, The 16th International Cogress of Theoretical and Applied Mechanics, Lyngby, Denmark, 1984.
Lee H., Peng K., Wang J., An Anisotropic Damage Criterion for Deformation Instabil ity and its Application to Forming Limit Analysis of Metal Plates, Engineering Fracture Mechanics, 21, 1031–1054, 1985.
Lubineau G., A Pyramidal Modeling Scheme for Laminates – Identification of Transverse Cracking, International Journal of Damage Mechanics, 19, 4, 499–518, 2010.
Lubineau G., Ladeveze P., Construction of a Micromechanics-based Intralaminar Me somodel, and Illustrations in ABAQUS/Standard, Computational Materials Science, 43, 1, 137–145, 2008.
Luccioni B., Oller S., A Directional Damage Model, Computer Methods in Applied Mechanics and Engineering, 192, 1119–1145, 2003.
Martin R., Rekondo A., Echeberria J., Cabanero G., Grande H.J., Odriozola I., Room Temperature Self-healing Power of Silicone Elastomers Having Silver Nanoparticles as Crosslinkers, Chemical Communications, 48, 66, 8255, DOI: 10.1039/c2cc32030d, 2012.
Nichols J.M., Abell A.B., Implementing the Degrading Effective Stiffness of Masonry in a Finite Element Model, North American Masonry Conference, Clemson, South Carolina, USA, 2003.
Nichols J.M., Totoev Y.Z., Experimental Investigation of the Damage Mechanics of Masonry Under Dynamic In-plane Loads, North American Masonry Conference, Austin, Texas, USA, 1999.
Rabotnov Y., Creep Rupture, [in:] Proceedings, Twelfth International Congress of Applied Mechanics, M. Hetenyi and W.G. Vincenti [Eds.], Stanford, 1968, Springer-Verlag, Berlin, pp. 342–349, 1969.
Rekondo A., Martin R., de Luzuriaga A.R., Cabanero G., Grande H.J., Odriozola I., Catalyst-free Room Temperature Self-healing Elastomers Based on AromaticDisulfide Metasthesis, Materials Horizons, DOI: 10.1039/c3mh00061c, 2013.
Science Daily, Chemists Create Self-assembling Conductive Rubber, ScienceDaily, Published online at http://www.sciencedaily.com/videos/2007/0409-metal rubber.htm, 2007.
Science Daily, ‘Terminator’ Polymer: Self-healing Polymer That Spontaneously andIndpendently Repairs Itself, ScienceDaily, (appeared on September 13, 2013 online), http://www.sciencedaily.com/releases/2013/09/130913101819.htm, 2013.
Sidoroff F., Description of Anisotropic Damage Application in Elasticity, [in:] IUTAMColloqium on Physical Nonlinearities in Structural Analysis, pp. 237–244, Springer-Verlag, Berlin, 1981.
Templeton G., ‘Terminator’ Polymer Can Spontaneously Self-heal in Just TwoHours, ExtremeTech, Published online at http://www.extremetech.com/extreme/166656terminator-polymer-can-spontaneously-self-heal-in-just-two-hours, 2013.
Voyiadjis G.Z., Degradation of Elastic Modulus in Elastoplastic Coupling with FiniteStrains, International Journal of Plasticity, 4, 335–353, 1988.
Voyiadjis G.Z., Kattan P.I., A Coupled Theory of Damage Mechanics and Finite StrainElasto-Plasticity – Part II: Damage and Finite Strain Plasticity, International Journal ofEngineering Science, 28, 6, 505–524, 1990.
Voyiadjis G.Z., Kattan P.I., A Plasticity-Damage Theory for Large Deformation ofSolids – Part I: Theoretical Formulation, International Journal of Engineering Science, 30, 9, 1089–1108, 1992.
Voyiadjis G.Z., Kattan P.I., Damage Mechanics, Taylor and Francis (CRC Press), 2005.
Voyiadjis G.Z., Kattan P.I., Advances in Damage Mechanics: Metals and Metal MatrixComposites with an Introduction to Fabric Tensors, Second Edition, Elsevier, 2006.
Voyiadjis G.Z., Kattan P.I., A New Fabric-Based Damage Tensor, Journal of theMechanical Behavior of Materials, 17, 1, 31–56, 2006.
Voyiadjis G.Z., Kattan P.I., Damage Mechanics with Fabric Tensors, Mechanics ofAdvanced Materials and Structures, 13, 4, 285–301, 2006.
Voyiadjis G.Z., Kattan P.I., A Comparative Study of Damage Variables in ContinuumDamage Mechanics, International Journal of Damage Mechanics, 18, 4, 315–340, 2009.
Voyiadjis G.Z., Kattan P.I., A New Class of Damage Variables in Continuum DamageMechanics, Journal of Engineering Materials and Technology, ASME, in press, 2011.
Voyiadjis G.Z., Kattan P.I., Introduction to the Mechanics and Design of Undamageable Materials, International Journal of Damage Mechanics, 22, 3, 323–335, 2012.
Voyiadjis G.Z., Kattan P.I., On the Theory of Elastic Undamageable Materials, Journalof Engineering Materials and Technology, ASME, Special Issue on Modeling MaterialBehavior at Multiple Scales, Xi Chen [Ed.], 135, 2, 021002-1–021002-6, 2013.
Xu G.Q., Demkowicz M.J., Healing of Nanocracks by Disclinations, Physical ReviewLetters, 111, 145501, DOI: 10.1103/PhysRevLett.111.145501, 2013.
Zhang B., Zhao D.Q., Pan M.X., Wang W.H., Greer A.L., Amorphous MetallicPlastic, Physical Review Letters, 94, 205502, DOI: 10.1103/PhysRevLett.94.205502, 2005.
DOI: 10.24423/engtrans.277.2014