Sprężysto-Plastyczna Deformacja i Pełzanie Powłoki Kulistej
General solution of the composite problem of instantaneous deformation and creep of plane circular membranes was found by the present authors in [5].
The solution methods applied in the works just mentioned can also be applied in cases of composite deformation of geometrically nonlinear shells of revolution in a membrane state.
The general idea of solution is described for a composite state of an elastic-plastic and creep deformation of a spherical shell of small rise in the range of large deflections. The fundamental solution for all the particular cases of instantaneous deformation is analysed in detail. It is found
that the analogy formulated by one of the present authors finds application to shells of revolution in the membrane state for pure creep also. On the basis of this analogy a physically justified and admissible solution of the problem is found in a simple manner. As a particular case is considered a shell of a perfectly plastic material, for which solution is obtained by elementary methods.
It is shown that the special cases of a linearly-elastic shell and a plane membrane can be obtained from the solutions given by the authors and coincide with the results obtained in [1-5].
References
Z. BYCHAWSKI, O stosowalności analogii sprężystej w zakresie nieliniowej geometrycznie teorii pełzania membran kołowych, Rozpr. Inżyn., 3, 13 (1965).
, Z. BYCHAWSKI, Duże ugięcia sprężyście nieliniowych membran kołowych, Rozpr. Inżyn., 1. 14 (1966).
Z. BYCHAWSKI, Elastic analogue in the general case of a geometrically nonlinear membrane subjected to creep, Arch. Mech. Stos., 4, 17 (1965).
Z. BYCHAWSKI, Large deflections of the elasto-creeping circular membrane, Arch. Mech. Stos., 3, 17 (1965).
Z. BYCHAWSKI, H. KOPECKI, Nieliniowe zagadnienia odkształceń sprężysto-plastycznych i pełzania membran kołowych, Rozpr. Inzyn., (w druku).
E. HOUDERMONT, Handbuch der Sonderstahlkunde, Berlin 1956.
J. MARIN, Mechanical properties of materials and design, New York 1942.
Z. BYCHAWSKI, A. Fox, Theory of complete viscoelastic behavior, Canadian Congress of Applied Mechanics, Quebec 1967.