Statyka i dynamika skręcanego cienkościennego dwuteownika o zmiennym, bisymetrycznym przekroju poprzecznym
After a detailed review of the existing research works dealing with the mentioned problem, is given the beam's state of displacements and strains is analysed. The necessity of introducing corrections to the idea of the linear strains in the beam's flanges (δ_p^* instead of δp) and the adequate
normal stresses is settled. Taking these corrections into consideration the problem's fundamental differential equation (3.30) is derived, independently by the energy-method and satisfying the equilibrium condition, and formulas for the internal forces and stresses in the beam's cross-section are determined. Also the proper initial and boundary conditions are discussed and a way of the fundamental equation's solution by means of the finite differences method is suggested. A comparison of the paper's main formulas with these adequate to author's theory of thin-walled cylindrical beam-shells with varying cross-section [9, 10], and those regarding constant sections [8] leads to the conclusion that among them the theory presented here is the most general one.
Two numerical examples demonstrate the practical computation method of the I-beam considered; the first one concerns the static problem, and the second the beam's torsional free vibrations question. Model experiments confirm the correctness of the elaborated theory.
References
G. G. KUBO, B. G. JOHNSTON, W. J. ENEY, Non-uniform torsion of plate girders, Proc. ASCE, 449, 80 (1954), 1-28.
L. H. N. LEE, Non-uniform torsion of tapered I-beams, J. Franklin Inst., 1, 262 (1956), 37-44.
F. HAMAYOSHI, On the torsion of I-beam with variable webheight of second order, Proc. 10th Japan Nat. Congress for Appl. Mech. (1960), II-18, 105-108.
F. HAMAYOSHI, On torsion of I-beam with a web of vabiable height, Mem. Fac. Eng. Hokkaido Univ., 2, 11 (1961), 209-228.
5. Ю. И. Остроменцкий, Практический способ расчета тонкостенных стержней ступенчато-переменного сечения, Расчет пластин и оболочек, 34 (1963), 94-104.
Cz. MICKIEWICZ, Skręcanie pręta cienkościennego o skończonej liczbie skokowych zmienności przekroju poprzecznego, Zesz. Nauk. Polit. Szczec., Budownictwo IV Mechanika Stosowana, 39 (1963), 121-138.
Z. CYWIŃSKI, Skręcanie prętów cienkościennych typu dwuteownika o zmiennej wysokości środnika, Rozpr. Inżyn., 2, 13 (1965), 269-280.
8. B. 3. Власов, Тонкостенные упругие стержни, Гос. издат. физ. мат. лит., Москва 1959.
Z. CYWIŃSKI, Teoria skręcania prętów cienkościennych o zmiennej sztywności, Arch. Inżyn. Lądowej, 2, 10 (1964), 161-183.
Z. CYWIŃSKI, Torsion des dünnwandigen Stabes mit veränderlichem, einfack symmetrischem, offenem Querschnitt, Der Stahlbau 10, 33 (1965), 301-307.
, Z. CYWINSKI, Skręcanie prętów cienkościennych typu dwuteownika 0 dwukierunkowej zmienności przekroju, Rozpr. Inzyn., 1, 16 (1968), 21-32.
G. C. LEE, B. A. SZABO, Torsional response of tapered I-girders, J. Struct. Div., Proc. ASCE, ST 4, 93 (1967), 233-252.
J. RUTECKI, Cienkościenne konstrukcje nośne, PWN, Warszawa 1966.
В. И. Смирнов, Курс высшей математики, 4, Гос. изд. физ. мат. лит., издание пятое, Москва 1958.
L. COLLATZ, Numerische Behandlung von Differentialgleichungen, Springer Verlag, zweite Auflage, Berlin, Göttingen, Heidelberg 1955.
Z. CYWINSKI, Zum Torsionsproblem des dünwandigen geraden Stabes mit veränderlichem Querschnitt, Der Stahlbau 10, 36 (1967), 317-318.
P. WILDE, The torsion of thin-walled bars with variable cross-section, Arch. Mech. Stos., 4, 20 (1968), 431-443.