Engineering Transactions, 56, 3, pp. 247–268, 2008
10.24423/ENGTRANS.198.2008

Modelling of the electrohydraulic full active vehicle suspension

J. KONIECZNY
AGH – University of Science and Technology, Department of Process Control, Kraków
Poland

The study investigates various models of vehicle suspensions. A quarter-vehicle full active suspension is chosen for further analysis. A mathematical model, governed by nonlinear differ- ential equations, is proposed that takes into account dynamic properties of an electrohydraulic actuator. The mathematical model being implemented, it was expressed in terms of the state variables. In part two, the physical model was implemented and parametric identification pro- cedure was applied. Phenomenological model simulation data are compared with results of experimental testing of a full, active vehicle suspension. The final section is focused on static and dynamic properties of an open-loop system (without a controller) determined on the basis of obtained models.
Keywords: electrohydraulic actuator; full active; suspension; servovalve; model
Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

J. Bajkowski, W. Grzesikiewicz, L. Orłowski, Model matematyczny oraz badania eksperymentalne elementów zawieszenia szybkobieżnego pojazdu gąsienicowego, Zeszyty Naukowe P.P., Wyd. Polit. Poznańska, 54, 23–30, 2002.

D. A. Crolla, M. B. A. Abdel–Hady, Active suspension control; performance comparisons using control laws applied to a full vehicle model, Vehicle System Dynamics, 20, 107–120 1991.

M. D. Donahue, Implementation of an Active Suspension, Preview Controller for Improved Ride Comfort, University of California – Berkeley 2001.

J. Grajnert, Izolacja drgań w maszynach i pojazdach, Wydawnictwo Politechniki Wrocławskiej – Wrocław 1997, ISSN 1425-0993.

C. H. Hansen, S. D. Snyder, Active control of noise and vibration, E & FN SPON: Chapman and Hall, London 1997.

D. Hrovat, Survey of advanced suspension developments and related optimal control applications, Automatica, 33, 10, 1781–1817, 1997.

R. Johansson, A. Rantzer, Nonlinear and Hybrid systems in automotive control, Springer, 2003.

D. Karnopp, Vehicle stability, Marcel Dekker, New York 2004.

J. A. Levitt, N. G. Zorka, Influence of tire damping in quarter car active suspension models, Journal of Dynamic Systems, Measurement and Control: Transactions of the ASME, 113, 134–137, 1991.

R. Palej, Dynamika i stateczność aktywnych pneumatycznych układów wibroizolacji, Seria Mechanika – Monografia 218 Wydawnictwo Politechniki Krakowskiej, Kraków 1997, PL ISSN 0860-097X.

A. Pizoń, Hydrauliczne i elektrohydrauliczne układy sterowania i regulacji, WNT, Warszawa 1987.

J. Pluta, J. Konieczny, R. Korzeniowski, Badanie pneumatycznych układów redukcji drgań mechanicznych, PNEUMA’2000: XII Krajowa Konferencja Pneuma’ 2000 Kielce 2000, Wydawnictwo Politechniki Świętokrzystkiej – Zeszyty Naukowe Elektryka, 39, 269–278, PL ISSN 0239-4960.

R. Rajamani, Vehicle dynamics and control, Springer, 2006.

Mannesmann Rexroth Catalogue.

J. T. Viersma, Analysis, synthesis and design of hydraulics servosystems and pipelines, Amsterdam, Elsevier Scientific Publishing Company, 1980.

G. R. Wendel, G. L. Stecklein, A regenerative active suspension system. Vehicle Dynamics and Electronic Controlled Suspensions, SAE Special Publication Number 861, 129–135, 1991.

S. Yildirim, Vibration control of suspension using a proposed neural network, Journal of Sound and Vibration, 277, 1059–1069, 2004.

F. Yu, D. A. Crolla, An optimal self-tuning controller for an active suspension, Vehicle System Dynamics, 29, 51–65, 1998.

F. Yu, D. A. Crolla, State observer design for an adaptive vehicle suspension, Vehicle System Dynamics, 30, 457–471, 1998.

A. Zaremba, Optimal active suspension design using constrained optimization, Journal of Sound and Vibration, 207, 3, 351–364, 1997.




DOI: 10.24423/ENGTRANS.198.2008