Comparison of Some Numerical Integration Methods for The Equations of Motion of Systems with a Finite Number of Degrees of Freedom
References
A. A. SAMARSKIJ, Introduction to the theory of difference schemes [in Russian], Nauka, Moskwa 1971.
N. M. NEWMARK, A method of computation for structural dynamics, J. Eng. Mech. Div., ASCE, 85, EM 3, pp. 67-94, 1959.
Z. KĄCZKOWSKI, GeneraJ formulation of stiffness matrix for space-time finite elements, Arch. Inż. Ląd., 25, 3, 351-357, 1979.
R. D. RICHTMYER, K. W. MORTON, Difference methods for initial value problems, New York, London, Sydney 1967.
K. J. BATHE, E. WILSON, Numerical methods in finite element analysis, Prentice-Hall, New Jersey 1976.
O. C. ZIENKIEWICZ, Finite element method, Mc Graw Hill, 1977.
O. C. ZIENKIEWICZ, A new look at the Newmark, Haubolt and other time stepping formulas. A weighted residual approach, Earth. Eng. and Struct. Dyn., 5, 413-418, 1977.
J. LANGER, Parasitic damping in computer-aided solutions of equations of motion [in Polish], Arch. Inż. Ląd., 25, 3, 351-369, 1979.
I. KOŹNIEWSKA, Recurrence equations [in Polish], PWN, Warszawa 1972.
T. LEWIŃSKI, Stability analysis of a difference scheme for the vibration equation with a finite number of degrees of freedom, Applicationes Mathematicae, 18, 3, 1982.
Z. KĄCZKOWSKI, J. LANGER, Synthesis of the space-time finite element method, Arch. Inż. Ląd., 26, 1, 11-17, 1980.
Z. KACPRZYK, On certain modifications of the time-space FEM, Doctoral thesis [in Polish], Warszawa 1982.