On Donati’s Theorem in Shell Theory
The Donati theorem has been formulated in connection with three-dimensional problems of the linear theory of elasticity. In this paper a simular theorem is considered for two-dimensional problems encountered in the linear theory of shells. As closely related topics the stress functions and compatibility equations in the shell theory are also studied. A shell is assumed to be deformed in accordance with the hypothesis of linear distribution of the displacement vector across the shell thickness. Thus, six local degrees of freedom of the shell are taken into account. The results obtained in the paper include, as a special case, the well-known stress functions and compatibility equations of the Kirchhoff-Love and Reissner theories.
References
M. E. GURTIN, The linear theory of elasticity, Handbuch der Physik VIa/2, Springer-Verlag, Berlin-Heidelberg-New York 1972.
E. REISSNER, A note on stress functions and compatility equations in shell theory, Topics in Applied Mechanics, Elsevier 1965.
W. ZERNA, Matematisch strenge Theorie elastischer Schalen, ZAMM, 42, 7/8, 333-341, 1962.
H. H. BEKYA, Heкoтopыe oбщие метоъы nocтpoeния рaзличных вapиaнтoв meopии оболочек, Haука, Mocквa 1982.
L. M. HABIP, Theory of elastic shells in the reference state, Ing. Archiv, 34, 228-237, 1965.
W. PIETRASZKIEWICZ, Finite rotations and Lagrangean description in the non-linear theory of shells, PWN, Warszawa-Poznań 1979.
K. З. ГAЛИMOB (peд.), Teopuя оболочек c yчетом попеpeчного cъвига, KАЗАНЬ, 1977.
P. M. NAGHDI, The theory of plates and shells, Handbuch der Physik Vla/2, Springer-Verlag, Berlin-Heidelberg-New York 1972.
P. M. NAGHDI, A new derivation of the general equatlons of elastic shells, Int. J. Engng. Sci,. l, 509-522, 1963.
Б. Л. ПЕЛЕХ, Теория оболочек с конечной съвиговой жсесмкостыо, Наукова Думка, Киев 1973.