A Class of Rigid Annular Disc Inclusion Problems Involving Translations and Rotations
The paper considers the class of problems related to the annular inclusions located in an elastically supported layer. The layer is considered to be transversely isotropic and the inclusion is located on the plane of symmetry. The analysis is based on the potentia} functions referred to the cylindrical harmonics. The governing triple integral equations are solved by employing two approximate schemes: one focusses on the asymptotic expansion technique and the second focusses on the iterative series technique. The rotational and translational stiffnesses for the embedded annular disc inclusion, related to the displacement of the annulus in one of four ways: (i) translation and {!i) rotation in a direction normal to the piane face of the annulus; (iii) rotation and (iv) translation in a direction parallel to the face, are being investigated. The solutions of the special and limiting cases are also presented. Numerical calculations are carried out with some practical materials.
References
T. YOKOBORI, An interdisciplinary approach to fracture and strength of solids, Walters Noordhoff, pp, 239-247, 1966.
T. MURA, Micromechanics of defects in solids, Sijthoff-Noordhoff, The Netherlands, 1981.
I. R. WILLIS, Variational and related methods for the overall properties of composites, Adv. in Appl. Mech., Ed. by C. S. YIH, 21, pp. 1-78, Academic Press, New York 1981.
L. J. WALPOLE, Elastic behaviour of compo.site materials, theoretical foundations, Adv. in Appl. Mech., Ed. by C. S. YIH, 21, pp. 169-242, Academic Press, New York 1981.
G. M. L. GLADWELL, Contact problems in the classical theory of elasticity, Sijthoff-Noordhoff, Amsterdam 1980.
A. P. S. SELVADURAI, B. M. SINGH, Same annular disc inclusion problems in elasticity, Int. J. Solids Structures, 20, 2, 129-139, 1984.
S. C. BOSE, On the torsion of a transversely isotropic circular cylinder having a small spherical inclusion of an isotropic material, ZAMM, 45, 133-135, 1965.
A. P. S. SELVADURAI, Asymetric displacement of a rigid disc inclusion embedded in a transversely isotropic elastic medium of infinite extent, Int. J. Engng. Sci., 18, 979-986, 1980.
B. ROGOWSKI, A transversely isotropic layer pressed onto a right base with a protrusion or pit, Mech. Teoret. Stos., 22, l-2, 279-297, 1984.
B. ROGOWSKI, Funkcje przemieszczeń dla ośrodka poprzecznie izotropowego, Mech. Teor. Stos., 13, 1, 69-83-, 1975.
W. E. WILLIAMS, Integral equation formulation of some three part boundary value problems, Proc. Edin. Math. Soc. Ser. 2, 13, 317-323, 1963.
J. C. COOKE, Triple integral equations, Quart. J. Mech. Appl. Math., 16, 193-203, 1963.
C. J. TRANTER, Some triple integral equations, Proc. Glasgow Math. Assoc. 4, 200-203, 1960.
W. D. COLLINS, On the solution of some axisymmetric boundary value problems by means of integraf equations, IV. Potential problems for a circular annulus, Proc. Edin. Math. Soc., 13, 235-246, 1963.
D. L. JAIN, R. P. KANWAL, Three part boundary value problems in potential and generalised axisymmetric potential theories, J. d’Anal. Math., 25, 107-158, 1972.
I. N. SNEDDON, Mixed boundary value problems in potentia! theory, North Holland, Amsterdam 1966.
R. P. KANWAL, Linear integraf equations: theory and technique, Academic Press, New York, 1971.
В. С. ГУРЕНКО, В. И. МЩТЛКОВСКИЙ, Давление осесимметрuчиого колцевого штампа на упругое полупространство, ПММ, 24, 334-340, 1960.
T. SHIBUYA, T. KOIZUMI, T. NAKAHARA, An elastic contact problem for a half-space indented by a flat annual rigid stamp, Int. J. Engng. Sci., 12, 9, 759-771, 1974.
B. ROGOWSKI, Zagadnienie kontaktowe dla półprzestrzeni poprzecznie izotropowej z wyciskanym stemplem o kształcie pierścienia, ZN PŁ, Budownictwo, 21, 223-236, 1978.
B. ROGOWSKI, Mixed boundary value problems of a transversely isotropic layer under torsion and various boundary conditions, Rozpr. Inż., 31, 3, 293-315, 1983.
B. ROGOWSKI, Annular punch on a transversely isotropic layer bonded to a half-space, Arch. Mech., 34., 2, 119-126, 1982.
B. ROGOWSKI, Symetryczne oddziaływanie pierścieniowego stempla na sprężyście podpartą warstwę poprzecznie izotropową, ZN PŁ, Budownictwo, 31, 55-80, 1984.