Engineering Transactions, 36, 4, pp. 707-737, 1988

Damage Mechanics Experimental Background

M. Basista
Institute of Fundamental Technological Research, Warszawa
Poland

The present paper is a synthetic review of available experimental results, concerning damage nucleation and growth in various materials at diverse loading conditions. An emphasis is placed on the physical complexity of the damage processes. To this end, an inference of the state of stress, type of applied load, material mesostructure and temperature are studied in detail. Characteristic features attributed to the damage process, such as damage­-induced material inelasticity and anisotropy are stressed. The second part of the review will be devoted to selected damage models published so far.

Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

D. KRAJCINOVIC and D. SUMARAC, Micromechanics of the damage processes, CISM Lecture Notes, Udine 1986.

YU. V. ZAITSEV, Modeling of deformation and strength of concrete using fracture mechanics methods [in Russian], Stroiizdat, Moscow 1982.

P. TAPPONIER and W. F. BRACE, Development of stress-induced microcracks in Westerly granite, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 13, 103-112, 1976.

C. H. SCHOLZ, Microfracturing and the inelastic deformation of rock in compression, J. Geophys. Res., 73, 1417-1432, 1968.

L.S. COSTIN, A microcrack model for the deformation and failure of brittle rock, J. Geophys. Res., 88, 9485-9492, 1983.

R. L. TSAI and R. RAJ, Creep fracture in ceramics containing small amounts of a liquid phase, Overview 18, Acta Metali., 30, 1043-1058, 1982.

J. LEMAITRE and J. L. CHABOCHE, Aspect phenomenologique de la rupture par endommagement, J. Mec. Appl., 2, 317-365, 1978.

J. HULT, Continuum damage mechanics: theory and applications. Introduction and general overview, CISM Lecture Notes, Udine 1986.

A DRAGON and Z. MRÓZ, A continuum model for plastic-brittle behaviour of rock and concrete, Int. J. Engng. Sci., 17, 121-137, 1979.

M. L. KACHANOV, On time to rupture in creep conditions [in Russian]. lzv. Ak. Nauk SSR, Otd. Tekhn. Nauk., No. 8, 26-31, 1958.

J. JANSON and J. HULT, Fracture mechanics and damage mechanics – a combined approach, J. Mec. Appl., 1, 69-84, 1977.

D. KRAJCINOVIC, Continuum damage mechanics, Appl. Mech. Rev., 37, 1-6, 1984.

M. BASISTA, On continuum models of damage [in Polish], IFTR Reports, 140, 1984.

J. C. JAEGER and N. G. W. COOK, Fundamentals of rock mechanics, Chapman and Hall, London 1979.

S. MURAKAMI, Anisotropic damage in metals, in: Failure Criteria of Structured Media, J. P. BOEHLER [ed.], Balkema Publ., 1988.

S. MURAKAMI, Anisotropic aspects of material damage and applications of continuum damage mechanics, CISM Lecture Notes, Udine 1986.

R. H. EVANS and M. S. MARATHE, Microcracking and stress-strain curves for concrete in tension, Materiaux et Constructions, 1, 61-64, 1968.

J. G. ROTS, P. NAUTA, G. M. A KUSTERS and J. BLAAUWENDRAAD, Smeared crack approach and fracture localization in concrete, Heron, 30, No. 1, 1985.

M. ORTIZ, A constitutive theory for the inelastic behavior of concrete, Mechanics of Materials, 4, 67-93, 1985.

C. FAIRHURST and N. G. W. COOK, The phenomenon of rock splitting parallel to the direction of maximum compression in the neighbourhood of a surface, Proc. 1st Congr. Int. Soc. Rock Mech., Lisbon, 1, 687-692, 1966.

J. LEMAITRE and J. L. CHABOCHE, Mecanique des materiaux solides, Dunod, Paris 1985.

S. NEMAT-NASSER and H. HORII, Compression-induced nonplanar crack extensions with application to splitting, exfoliation, and rockburst, J. Geophys. Res., 87, B8, 6805-6821, 1982.

H. HORII and S. NEMAT-NASSER, Compression-induced microcrack growth in brittle solids: axial splitting and shear failure, J. Geophys. Res., 90, B4, 3105-3125, 1985.

H. HORII and S. NEMAT-NASSER, Brittle failure in compression: splitting, faulting and brittle-ductile transition, Phil. Trans. R. Soc. London, A 319, 337-374, 1986.

W. F. BRACE and E. G. BOMBOLAKIS, A note on brittle crack growth in compression, J. Geo phys. Res., 68, 3709-3713, 1963.

E. HOEK, Rock fracture under static stress conditions, Council for Scientific and Industrial Research Report MEG 383, National Mechanical Engineering Research Institute, Pretoria, South Africa, 1965.

A. DRAGON, On phenomenological description of rock-like materials with account of kinetics of brittle fracture, Arch. Mech., 28, 13-30, 1976.

J. RACLIN, Sur l'orientation des fissures fragiles dans un milieu anisotrope, C. R. Acad. Sc., Paris, t. 285, Serie B, 345-348, 1977.

T. T. C. HSU, F. O. SLATE, G. M. STURMAN and G. WINTER, Microcracking of plain concrete and the shape of the stress-strain curve, J. Amer. Concr. Inst., 60, 209-224, 1963.

YU. V. ZAITSEV, Inelastic properties of solids with random cracks, in; Z. P. BAZANT [ed.], William Prager Symposium on Mechanics of Geomaterials: Rocks, Concretes, Soils, preprints, Northwestern University, Evanston 1983.

M. F. ASHBY, Micromechanisms of fracture in static and cyclic failure, in: Fracture Mechanics, R. A. SMITH [ed.], Pergamon Press, Oxford, 1-27, 1979.

H. E. EVANS, Mechanisms of creep fracture, Elsevier 1984.

N. J. PETCH, Metallographic aspects of fracture, in: Fracture an Advanced Treatise, Vol. 1, H. LIEBOWITZ [ed.], Academic Press, New York 1968.

J. F. KNOTT, Fundamentals of fracture mechanics, Butterworth, London 1973.

F. A. MCLINTOCK, Ductility, p. 255, A.S.M., 1968.

G. LE ROY, J. D. EMBURY, G. EDWARD and M. F. ASHBY, A model of ductile fracture based on the nucleation and growth of voids, Acta Metali., 29, 1509-1522, 1981.

S. H. GOODS and L. M. BROWN, The nucleation of cavities by plastic deformation, Overview 1, Acta Metali., 27, 1-15, 1979.

J. M. JALINIER and J. H. SCHMITT, Damage in sheet metal forming, Part I, II, Acta Met., 30, 1789-1809, 1982.

J. H. SCHMITT, J. M. JALINTER and B. BAUDELET, Analysis of damage and its influence on the plastic properties of copper, J. Mater. Sci., 16, 95 -101, 1981.

J. H. SCHMITT, R. ARGEMI, J. M. JALINJER and B. BAUDELET, On the existence of initial damage in sheet metal, J. Mater. Sci., 16, 2004-2008, 1981.

J. DUFAILLY, J. LEMAITRE, J. M. JALINIER, J. H. SCHMITT and B. BAUDELET, Determination of the relative density changes in the presence of high strain gradient, J. Mater. Sci. Letters, 15, 3162-3165, 1980.

K. E. PUTTICK, Ductile fracture in metals, Philosophical Magazine, 4, 964-969, 1959.

H. C. ROGERS, The tensile fracture of ductile metals, AIME Trans., 218, 498-506, 1960.

V. F. ZACKAY, W. W. GERBERICH and E. R. PARKER, Structural models of fracture, in: Fracture – An Adcanced Treatise, Vol. 1, H. LIEBOWITZ [ed.], Academic Press, New York 1968.

J. GURLAND, Observations on the fracture of cementite particles in a spheroidized 1.05% C steel deformed at room temperature, Acta Metall., 20, 735-741, 1972.

J. GURLAND, Fracture of metal- matrix particulate composites, in: Composite Materials, Vol. 5: Fracture and Fatigue, L. J. BROUTMAN ed., Academic Press, New York 1974.

P. PERZYNA, Internal state variable description of dynamic fracture of ductile solids, Int. J. Solids and Structures, 22, 797-818, 1986.

B. F. DYSON, M, S. LOVEDAY and M. J. RODGERS, Grain boundary cavitation under various states of applied stress, Proc. Roy. Soc. London, A 349, 245-259, 1976.

B. F. DYSON and F. A. MCLEAN, Creep of Nimonic BOA in torsion and tension, Metal. Sci., 11, 37-45, 1977.

D. R. HAYHURST and F. A. LECKIE, The effect of creep constitutive and damage relationships upon the rupture time of solid circular torsion bar, J. Mech. Phys. Solids, 21, 431-446, 1973.

F. A. LECKIE and D. R. HAYHURST, Constitutive equations for creep rupture, Acta Metall., 25, 1059-1070, 1977.

S. MURAKAMI and N. OHNO, Creep damage analysis in thin-walled tubes, in: Inelastic Behaviour of Pressure Vessels and Piping Components, T. Y. CHANG and E. KREMPL [eds.], PVP-PB-028, ASME, 55-69, New York 1978.

S. MURAKAMI and N. OHNO, A continuum theory of creep and creep damage, Proc. JUT AM Symp. Creep in Structures, Leicester UK., 422-444, Springer 1981.

I. W. CHEN and A. S. ARGON, Creep cavitation in 304 stainless steel, Acta Metall., 29, 1321-1333, 1981.

R. LAGNEBORG, Creep: mechanisms and theories, in: Creep and Fatigue in High Temperature AIIoys, J. BRESSERS [ed.], 41-71, Elsevier Applied Science, London 1981.

W. A. TRĄMPCZYŃSKI and D. R. HAYHVRST, Creep deformation and rupture under non-proportional loading, in: Creep in Structures, 388-404, Springer 1981.

W. A. TRĄMPCZYŃSKI, D. R. HAYHURST and F. A. LECKIE, Creep rupture of copper and aluminium under non-proportional loading, J. Mech. Phys. Solids, 29, 353-374, 1981.

B. F. DYSON, A unifying view on the kinetics of creep cavity growth, in: Creep and Fracture of Engineering Materials and Structures, B. WILSHIRE and D. R. J. OWEN [eds.], Pineridge Press 1981.

F. GAROFALO, Fundamentals of creep and creep-rupture in metals, Macmillan, New York 1965.

S. MURAKAMI and T. IMAIZUMJ, Mechanical description of creep damage state and its experimental verification, J. Mec. Ther. Appl., 1, 743-761, 1982.

D. BROEK, Elementary engineering fracture mechanics, Noordhoff, Leyden 1974.

V. M. RADHAKRISHNAN and Y. MUTOH, On fatigue crack growth in stage I, in: The Behaviour of Short Fatigue Cracks, K. J. MILLER and E. R. DE LOSS RIOS [eds.], Mech. Eng. Publ., London 1986.

A. F. BLOM, A HEDLUND, W. ZHAO, A. FATHULLA, B. WEISS and R. STICKLER, Short fatigue crack growth behaviour in Al 2024 and Al 7475, ibid.

M. RONAY, Fatigue of high-strength materials, in: Fracture - An Advanced Treatise, Vol. 3, H. LIEBOWITZ [ed.], Academic Press, New York 1971.

A. T. YOKOBORI jr., T. YOKOBORI, K. SATO and K. SYOJI, Fatigue crack growth under mixed modes I and II, Fatigue Fracture Engng. Mater. Struct., 8, 315-325, 1985.

L. DAVISON and A L. STEVENS, Thermomechanical constitution of spalling elastic bodies, J. Appl. Phys., 44, 668-674, 1973.

L. SEAMAN, D. R. CURRAN and D. A. SHOCKEY, Computational models for ductile and brittle fracture, J. Appl. Phys. 47, 4814-4826, 1976.

L. SEAMAN, D. R. CURRAN and D. A. SHOCKEY, Development of a microfacture model for high rate tensile damage, in: Creep and Fracture of Engineering Materials and Structures, B. WILSHIRE and D. R. J. OWEN [eds.], 345-364, Pineridge Press, Swansea 1981.

D. A. SHOCKEY, D. R. CURRAN, L. SEAMAN, J. T. ROSENBERG and C. F. PETERSEN, Fracture of rock under dynamic loads, Int. J. Rock Mech. Sci. Geomech. Abstr., 11, p. 303, 1974.

L. J. BROUTMAN [ed.], Composite materials, Vol. 5. Fracture and fatigue, Academic Press, New York 1974.

G. K. SIH and V. P. TAMUZ [eds.], Strength and fracture of composite materials [in Russian], Zinatne, Riga 1983.

K. L. REIFSNIDER [ed.], Damage in composite materials, ASTM STP 775, New York 1982.

Z. HASHIN and C. T. HERAKOVICH [eds.], Mechanics of composite materials, Pergamon, 1983.

M. J. OWEN, Fatigue damage in glass-fiber reinforced plastics, in: Fracture and Fatigue, L. J. BROUTMAN [ed.], 314-339, Academic Press, New York 1974.

J. P. BOEHLER and J. RACLIN, Failure criteria for glass-fiber reinforced composites under confining pressure, J. Struct. Mech., 13, 371-393, 1985.

J. R. HANCOCK, Fatigue of metal-matrix composites, in: Fracture and Fatigue, L. J. BROUTMAN [ed.], 371-414, Academic Press, New York 1974.

H. CHAI, K. D. BABCOCK and W. G. KNAUSS, Modeling of growth of delamination defect in composite plate subjected to impact load [in Russian], in: Strength and Fracture of Composite Materials, 45-47, Zinatne, Riga 1983.