Engineering Transactions, 57, 3-4, pp. 145–183, 2009
10.24423/engtrans.172.2009

Review on spectral decomposition of Hooke’s tensor for all symmetry groups of linear elastic material

Katarzyna KOWALCZYK-GAJEWSKA
Institute of Fundamental Technological Research Polish Academy of Sciences, Warszawa
Poland

Janina OSTROWSKA-MACIEJEWSKA
Institute of Fundamental Technological Research Polish Academy of Sciences, Warszawa
Poland

The spectral decomposition of elasticity tensor for all symmetry groups of a linearly elastic material is reviewed. In the paper it has been derived in non-standard way by imposing the symmetry conditions upon the orthogonal projectors instead of the stiffness tensor itself. The numbers of independent Kelvin moduli and stiffness distributors are provided. The corresponding representation of the elasticity tensor is specified.
Keywords: linear elasticity; anisotropy; symmetry group; spectral decomposition
Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

J. G. Berryman, Bounds and self-consistent estimates for elastic constants of random polycrystals with hexagonal, trigonal, and tetragonal symmetries, J. Mech. Phys. Solids, 53, 2141–2173, 2005.

A. Blinowski and J. Ostrowska–Maciejewska, On the elastic orthotropy, Arch. Mech., 48, 1, 129–141, 1996.

A. Blinowski and J. Rychlewski, Pure shears in the mechanics of materials, Mathematics and Mechanics of Solids, 4, 471–503, 1998.

P. Chadwick, M. Vianello, and S. C. Cowin, A new proof that the number of linear elastic symmetries is eight, J. Mech. Phys. Solids, 49, 2471–2492, 2001.

R. M. Christensen, Mechanics of Composites Materials, Dover Publications, 1979, 2005.

S. C. Cowin and M. M. Mehrabadi, Anisotropic symmetries of linear elasticity, Appl. Mech. Rev., 48, 5, 247–285, 1995.

S. C. Cowin and A. M. Sadegh, Non-interacting modes for stress, strain and energy in hard tissue, J. Biomechanics, 24, 859–867, 1991.

S. Forte and M. Vianello, Symmetry classes for elasticity tensors, J. Elasticity, 43, 81–108, 1996.

R. B. Hetnarski and J. Ignaczak, Methematical theory of elasticity, Taylor and Francis, New York, 2004.

W. Thompson (Lord Kelvin), Elements of Mathematical Theory of Elasticity, Chapter XV, On the Six Principal Strains of an Elastic Solid, Phil. Trans. R. Soc. London, 146, 481–498, 1856.

U. F. Kocks, C. N. Tome, and H.-R. Wenk, Texture and Anisotropy, Cambridge University Press, II edition, 2000.

K. Kowalczyk and J. Ostrowska–Maciejewska, Energy-based limit conditions for transversally isotropic solids, Arch. Mech., 54, 5–6, 497–523, 2002.

K. Kowalczyk–Gajewska, Micromechanical modelling of metals and alloys of high specific strength, IFTR Reports (in preparation), 2010.

K. Kowalczyk–Gajewska and J. Ostrowska–Maciejewska, The influence of internal restrictions on the elastic properties of anisotropic materials, Arch. Mech., 56, 205–232, 2004.

K. Kowalczyk–Gajewska and J. Ostrowska–Maciejewska, Mechanics of the 21st Century, Proceedings of the 21st International Congress of Theoretical and Applied Mechanics, Warsaw, Poland, 15–21 August 2004, Chapter “On the invariants of the elasticity tensor for orthotropic materials”, Springer (e-book), 2004.

S. G. Lekhnitskii, Theory of elasticity of an anisotropic body, Mir Publishers, 1981.

M. M. Mehrabadi and S. C. Cowin, Eigentensors of linear anisotropic elastic materials, Quart. J. Mech. Appl. Math., 43, 15–41, 1990.

M. Moakher and N. Norris, The closest elastic tensor of arbitrary symmetry to an elasticity tensor of lower symmetry, J. Elasticity, 85, 215–263, 2006.

J. Ostrowska–Maciejewska and J. Rychlewski, Generalized proper states for anisotropic elastic materials, Arch. Mech., 53, 4–5, 501–518, 2001.

J. Piekarski, K. Kowalczyk–Gajewska, J. H. Waarsing, and M. Maździarz, Mechanics of the 21st Century, Proceedings of the 21st International Congress of Theoretical and Applied Mechanics, Warsaw, Poland, 15–21 August 2004 Chapter “Approximations of stiffness tensor of bone – determining and accuracy“, Springer (e-book), 2004.

A. Roos, J.-L. Chaboche, L. Gelebart, and J. Crepin, Multiscale modelling of titanium aluminides, Int. J. Plasticity, 20, 811—830, 2004.

J. Rychlewski, “CEIIINOSSSTTUV”. Mathematical structure of elastic bodies [in Russian], Technical Report 217, Inst. Mech. Probl. USSR Acad. Sci., Moskva, 1983.

J. Rychlewski, Elastic energy decomposition and limit criteria [in Russian], Advances in Mechanics, 7, 3, 1984.

J. Rychlewski, Zur Abschätzung der Anisotropie, ZAMM, 65, 256–258, 1985.

J. Rychlewski, Unconventional approach to linear elasticity, Arch. Mech., 47, 2, 149–171, 1995.

J. Rychlewski, A qualitative approach to Hooke’s tensors. Part I, Arch. Mech., 52, 737-–759, 2000.

J. Rychlewski, Elastic waves under unusual anisotropy, J. Mech. Phys. Solids, 49, 2651–2666, 2001.

S. Sutcliffe, Spectral decomposition of the elasticity tensor, J. Appl. Mech., 59, 4, 762–773, 1992.

K. Tanaka and M. Koiwa, Single-crystal elastic constants of intermetallic compounds, Intermetallics, 4, 29–39, 1996.

F. Xu, R. A. Holt, and M. R. Daymond, Modeling lattice strain evolution during uniaxial deformation of textured Zircaloy-2, Acta Mater., 56, 3672–3687, 2008.

M. H. Yoo and C. L. Fu, Physical constants, deformation twinning, and microcracking of titanium aluminides, Metal. Mater. Trans. A, 29A, 49–63, 1998.

C. Zener, Elasticité et Anelasticité des Metaux, Dunod, Paris, 1955.




DOI: 10.24423/engtrans.172.2009