10.24423/EngTrans.1290.20210709
Large Amplitude Forced Vibrations of Restrained Beams Resting on Elastic Point Supports
References
Dowell E.H., On some general properties of combined dynamical systems, Journal of Applied Mechanics, 46(1): 206–209, 1979, doi: 10.1115/1.3424499.
Gürgöze M., A note on the vibrations of restrained beams and rods with point masses, Journal of Sound and Vibration, 96(4): 461–468, 1984, doi: 10.1016/0022-460X(84)90633-3.
Wang J., Qiao P., Vibration of beams with arbitrary discontinuities and boundary conditions, Journal of Sound and Vibration, 308(1–2): 12–27, 2007, doi: 10.1016/j.jsv.2007.06.071.
Lin H.-Y., Dynamic analysis of a multi-span uniform beam carrying a number of various concentrated elements, Journal of Sound and Vibration, 309(1–2): 262–275, 2008, doi: 10.1016/J.JSV.2007.07.015.
Lin H.-Y., On the natural frequencies and mode shapes of a multispan Timoshenko beam carrying a number of various concentrated elements, Journal of Sound and Vibration, 319(1–2): 593–605, 2009, doi: 10.1016/j.jsv.2008.05.022.
Kohan P.H., Nallim L.G., Gea S.B., Dynamic characterization of beam type structures : Analytical , numerical and experimental applications, Applied Acoustics, 72(12): 975–981, 2011, doi: 10.1016/j.apacoust.2011.06.007.
Wu J.S., Chen J.H., An efficient approach for determining forced vibration response amplitudes of a MDOF system with various attachments, Shock and Vibration, 19(1): 57–79, 2012, doi: 10.3233/SAV-2012-0616.
Yesilce Y., Free and forced vibrations of an axially-loaded Timoshenko multi-span beam carrying a number of various concentrated elements, Shock and Vibration, 19(4): 735–752, 2012, doi: 10.3233/SAV-2012-0665.
Wu J.-S., Chang B.-H., Free vibration of axial-loaded multi-step Timoshenko beam carrying arbitrary concentrated elements using continuous-mass transfer matrix method, European Journal of Mechanics – A/Solids, 38: 20–37, 2013, doi: 10.1016/j.euromechsol.2012.08.003.
Şakar G., The effect of axial force on the free vibration of an Euler-Bernoulli beam carrying a number of various concentrated elements, Shock and Vibration, 20(3): 357–367, 2013, doi: 10.3233/SAV-120750.
Farghaly S.H., El-Sayed T.A. , Exact free vibration of multi-step Timoshenko beam system with several attachments, Mechanical Systems and Signal Processing, 72–73: 525–546, 2016, doi: 10.1016/j.ymssp.2015.11.025.
El-Sayed T.A., Farghaly S.H., A normalized transfer matrix method for the free vibration of stepped beams : comparison with experimental and FE (3D) methods, Shock and Vibration, 2017: Article ID 8186976, 2017, doi: 10.1155/2017/8186976.
Lin R.M., Ng T.Y., Exact vibration modes of multiple-stepped beams with arbitrary steps and supports using elemental impedance method, Engineering Structures, 152: 24–34, 2017, doi: 10.1016/j.engstruct.2017.07.095.
Saito H., Sato K., YutaniT., Non-linear forced vibrations of a beam carrying concentrated mass under gravity, Journal of Sound and Vibration, 46(4): 515–525, 1976, doi: 10.1016/0022-460X(76)90677-5.
Lewandowski R., Nonlinear free vibrations of multispan beams on elastic supports, Computers & Structures, 32(2): 305–312, 1989, doi: 10.1016/0045-7949(89)90042-4.
Lewandowski R., Non-linear, steady-state analysis of multispan beams by the finite element method, Computers & Structures, 39(l–2): 83–93, 1991, doi: 10.1016/0045-7949(91)90075-W.
Pakdemirli M., Nayfeh A.H., Nonlinear vibrations of a beam- spring-mass system, Journal of Vibration and Acoustics, 116(4): 433–439, 1994, doi: 10.1115/1.2930446.
Ghayesh M.H., Kazemirad S., Darabi M.A., A general solution procedure for vibrations of systems with cubic nonlinearities and nonlinear/time-dependent internal boundary conditions, Journal of Sound and Vibration, 330(22): 5382–5400, 2011, doi: 10.1016/j.jsv.2011.06.001.
Barry O.R., Oguamanam D.C.D., Zu J.W., Nonlinear vibration of an axially loaded beam carrying multiple mass-spring-damper systems, Nonlinear Dynamics, 77(4): 1597–1608, 2014, doi: 10.1007/s11071-014-1402-5.
Wielentejczyk P., Lewandowski R., Geometrically nonlinear, steady state vibration of viscoelastic beams, International Journal of Non-Linear Mechanics, 89: 177–186, 2016, doi: 10.1016/j.ijnonlinmec.2016.12.012.
Lotfan S., Sadeghi M.H., Large amplitude free vibration of a viscoelastic beam carrying a lumped mass–spring–damper, Nonlinear Dynamics, 90(2): 1053–1075, 2017, doi: 10.1007/s11071-017-3710-z.
Bukhari M.A., Barry O.R., Nonlinear vibrations of a beam- spring-large mass system, Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition. Volume 4B: Dynamics, Vibration, and Control, Tampa, Florida, USA, November 3–9, 2017, Art. ID V04BT05A061, 2017, doi: 10.1115/IMECE2017-70444.
Fakhreddine H., Adri A., Rifai S., Benamar R., A multimode approach to geometrically non-linear forced vibrations of Euler-Bernoulli multispan beams, Journal of Vibration Engineering & Technologies, 8(2): 319–326, 2020, doi: 10.1007/s42417-019-00139-8.
Fakhreddine H., Adri A., Chajdi M., Rifai S., Benamar R., A multimode approach to geometrically non-linear forced vibration of beams carrying point masses, Diagnostyka, 21(4): 23–33, 2020, doi: 10.29354/diag/128603.
Chajdi M., Ahmed A., El Bikri K., Benamar R., Analysis of the associated stress distributions to the nonlinear forced vibrations of functionally graded multi-cracked beams, Diagnostyka, 22(1): 101–112, 2021, doi: 10.29354/diag/133702.
El Hantati I., Adri A., Fakhreddine H., Rifai S., Benamar R., A multimode approach to geometrically nonlinear free and forced vibrations of multistepped beams, Shock and Vibration, 2021: 6697344, 2021, doi: 10.1155/2021/6697344.
Géradin M., RixenD.J., Mechanical Vibrations: Theory and Application to Structural Dynamics, 3rd ed., John Wiley & Sons, 2015.
Rahmouni A., Beidouri Z., Benamar R., A discrete model for geometrically non-linear transverse free constrained vibrations of beams carrying a concentrated mass at various locations, Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014, Porto, Portugal, 30 June – 2 July 2014, A. Cunha, E. Caetano, P. Ribeiro, G. Müller (Eds.), pp. 2093–2099, 2014.
El Bikri K., Benamar R., Bennouna M.M., Geometrically non-linear free vibrations of clamped-clamped beams with an edge crack, Computers & Structures, 84(7): 485–502, 2006, doi: 10.1016/j.compstruc.2005.09.030.
El Kadiri M., Benamar R, White R.G., Improvement of the semi-analytical method, for determining the geometrically non-linear response of thin straight structures. Part I: Application to clamped-clamped and simply supported-clamped beams, Journal of Sound and Vibration, 249(2): 263–305, 2002, doi: 10.1006/jsvi.2001.3808.
DOI: 10.24423/EngTrans.1290.20210709