10.24423/engtrans.105.2012
A Characterization of the Rivlin-Ericksen Viscoelastic Fluid in the Presence of a Magnetic Field and Rotation
References
Benard H., Les tourbillions cellulaires dans une nappe liquid, Revue Gen´erale des Sciences Pures et Appliquees, 11, 1261–1271, 1309–1328, 1900.
Rayleigh L., On convective currents in a horizontal layer of fluid when the higher temperature is on the underside, Philosophical Magazine, 32, 529–546, 1916.
Jeffreys H., The stability of a fluid layer heated from below, Philosophical Magazine, 2, 833–844, 1926.
Chandrasekhar S., Hydrodynamic and Hydromagnetic Stability, Dover Publication, New York, 1981.
Bhatia P.K., Steiner J.M., Convective instability in a rotating viscoelastic fluid layer, Zeitschrift fur Angewandte Mathematik and Mechanik, 52, 321–327, 1972.
Bhatia P.K., Steiner J.M., Thermal Instability in a viscoelastic fluid layer in hydromagnetics, Journal of Mathematical Analysis and Applications, 41, 2, 271–283, 1973.
Sharma R.C., Thermal instability in a viscoelastic fluid in hydromagnetics, Acta Physica Hungarica, 38, 293–298, 1975.
Sharma R.C., Effect of rotation on thermal instability of a viscoelastic fluid, Acta Physica Hungarica, 40, 11–17, 1976.
Oldroyd J.G., Non-Newtonian effects in steady motion of some idealized elastic-viscous liquids, Proceedings of the Royal Society of London, A245, 278–297, 1958.
Rivlin R.S., Ericksen J.L., Stress deformation relations for isotropic materials, J. Rat. Mech. Anal., 4, 323, 1955.
Sharma R.C., Kumar P., Effect of rotation on thermal instability in Rivlin-Ericksen elastic-viscous fluid, Zeitschrift fur Naturforschung, 51a, 821–824, 1996.
Kumar P., Mohan H., Lal R., Effect of magnetic field on thermal instability of a rotating Rivlin-Ericksen viscoelastic fluid, Int. J. of Maths. Math. Scs., 2006, 1–10.
Pellow A., Southwell R.V., On the maintained convective motion in a fluid heated from below, Proc. Roy. Soc. London A, 176, 312–43, 1940.
Banerjee M.B., Katoch D.C., Dube G.S., Banerjee K., Bounds for growth rate of perturbation in thermohaline convection, Proc. R. Soc. A, 378, 301–304, 1981.
Banerjee M.B., Banerjee B., A characterization of non-oscillatory motions in magnetohydronamics, Ind. J. Pure & Appl Maths., 15, 4, 377–382, 1984.
Gupta J.R., Sood S.K., Bhardwaj U.D., On the characterization of nonoscillatory motions in rotatory hydromagnetic thermohaline convection, Indian J. Pure Appl. Math., 17, 1, 100–107, 1986.
Banyal A.S, The necessary condition for the onset of stationary convection in couplestress fluid, Int. J. of Fluid Mech. Research, 38, 5, 450–457, 2011.
Schultz M.H., Spline Analysis, Prentice Hall, Englewood Cliffs, New Jersey, 1973.
Banerjee M.B., Gupta J.R., Prakash J., On thermohaline convection of Veronis type, J. Math. Anal. Appl., 179, 327–334, 1992.
DOI: 10.24423/engtrans.105.2012