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This article presents a preliminary neural network analysis of the compressive behaviour
of aluminium open-cell sponges and answers the question of whether this phenomenon can be
modelled using artificial intelligence. The research consisted of two phases: first – compression
experiments, which in turn provided data for the second phase – the artificial neural network
(ANN) analysis. A two-argument function was proposed and tested using the gathered ex-
perimental data with a two-layer feedforward network. The determination coefficient R2 for
linear correlation between targets and modelling outputs was chosen as the criterion for the
assessment of the quality of modelling. The obtained values were R2 > 0.96, which shows that
neural networks hold the capacity to address the characterisation of the mechanical response
of aluminium open-cell sponges in compression. Additionally, the mean absolute relative error
(MARE) and the mean square error (MSE) were also determined.

Key words: metal sponges; aluminium sponges; compression tests; artificial neural net-
works.
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1. Introduction

Porous metals are one of the most interesting classes of materials; they find
applications in a broad range of fields, such as: medicine, transportation, energy
industry etc. [1, 2]. Depending on the type of porosity and skeleton’s structure,
they are classified to different subgroups: closed-cell metallic materials, open-
cell metals, sponges, gasars, and others [3]. Also, various skeleton’s materials are
used: from aluminium, copper, titanium to even gold and, of course, a scope of
alloys [4–10]. This material class is becoming more and more popular.

On the other hand, mechanical description of porous metals is also developing
and apart from well-grounded experimental and modelling techniques, like X-ray
tomography (e.g. [11, 12]), scanning electron microscopy SEM (e.g. [13, 14]),
FEM models (e.g. [15]) and many other classical solutions, new approaches are
being introduced (e.g. [16]). One of them is the authors’ concept to use arti-
ficial neural networks for the modelling of compressive behaviour of open-cell
aluminium. ANNs have been already applied with success in mechanical engi-
neering and mechanics of materials [17–19]. The new approach has the following
potential advantages: neural network analysis enables one to extend the range of
mechanical description beyond actual experimental data and gives the possibil-
ity to avoid the need of certain data which might be expensive, time-consuming
or difficult to obtain. In other words, ANNs have the capability of overcom-
ing some degree of data lack. This feature of neural networks is used in building
metamodels or surrogate models, and also in metallurgy and material engineer-
ing (e.g. [20]). However, there are also aspects of the use of neural networks
requiring special attention. For example, the network’s architecture could be in-
appropriately structured and as a result could obscure or distance the actual
material description.

The presented study is continuation and development of previous work [21, 22].
Compressive behaviour data from experiments carried on 12 samples of alu-
minium sponge were now to be computationally modelled with the use of ANNs:
two two-layer feedforward neural networks, differing in number of neurons in
hidden layers, were to be implemented in Matlab and the results were to be
compared.

2. The material and uniaxial compression tests

2.1. Samples

The material was not bought from an external supplier but was self-produced
[23] using the lost form casting method [24, 25]. It was an open-cell aluminium
sponge with PPI 5.4–6.2, depending on the anisotropy axis. Parameters of the
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production method were calibrated in the course of the manufacturing, so there
were two sample groups obtained: the prototype group (with some minor struc-
tural imperfections and generally larger apparent densities) and the regular group
(without visible structural mistakes, with smaller apparent densities). The struc-
tural imperfections in the first group of samples included: form residuals sank
inside samples, metal drops cast inside, irregular cell shapes. For the purpose
of the research, the prototype group was denoted as ‘P’ and the regular group
– with the letter ‘R’. Exemplary samples of both types are shown in Fig. 1.
Dimensions of the used samples and average apparent densities are shown in
Table 1. Samples’ dimensions were chosen such that they satisfy the condition
of the minimal number of cells to avoid the scale effect [26].

Fig. 1. Samples of the open-cell aluminium; left: type ‘P’ and right: type ‘R’.

Table 1. Basic specifications of the produced open-cell aluminium samples.

Parameter Value
av. PPI due to anisotropy: 5.4–6.2
av. sample size, ‘P’ 53.0× 39.5× 39.0 mm
av. sample size, ‘R’ 62.8× 39.5× 38.0 mm
av. apparent density, ‘P’ 0.485± 0.010 g/cm3

av. apparent density, ‘R’ 0.312± 0.006 g/cm3

2.2. Experimental procedure

The tests in the presented research were performed with the use of the
Zwick 1455 20 kN machine and the computer programme TestExpert II. The as-
sumed experimental conditions were: initial force 5 N, data acquisition frequency
100 Hz and strain rate 0.5%·L0 in mm/s, where L0 was the initial sample height.
Experiments and processing of results were partially conveyed according to [27].
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2.3. Results of the compression experiments

The graph of stress-strain response of the samples in compression is shown
in Fig. 2. Solid lines are for samples of the type ‘P’, while dashed lines are for
the ‘R’ group. Along with the stress-strain curves there are depicted values of
apparent density in g/cm3 for each sample. Different values of samples’ apparent
densities were attributed to the influence of structure imperfections in the ‘P’
group, as well as to the stochastic distribution of cell dimensions in the material
itself in both groups (compare: [28]).

Fig. 2. Stress-strain plots from the compression tests; the numbers by plots are apparent
densities in g/cm3. Solid lines represent the prototype group, the dashed lines are for regular

samples.

It can be noted that the compressive behaviour is related to the apparent
density. Observation of this correlation became the basis for choosing the form
of the relation assumed for modelling with ANNs.

3. The ANN analysis

3.1. Formulation of the ANN multiargument approximation

The proposed model of the function relating stress-strain behaviour and ap-
parent density has the following general form:

(3.1) σ = f(ε, ρ),
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where σ is stress, ε is strain and ρ is apparent density. Such a presumption
is justified by well-established theory [29], as well as by experimental curves
in Fig. 2. The experimental data from the above described compression tests
were used as a matter for the network’s learning and its consequent self-testing.
Modelling was done in Matlab R2018B using the multi-argument function fitting
ANN tool [30–32].

The assessment of the quality of the fitting capability of used network struc-
tures was based on the analysis of the relation between targets and corresponding
networks outputs. The authors assumed one primary criterion and two auxiliary
criteria. The main criterion was the coefficient of determination R2 for the linear
correlation between outputs of the ANN modelling and targets from experi-
ments, and the presumed threshold value was set as 0.9. Additionally, two other
measures were introduced as quality indicators: the mean square error (MSE)
and the mean absolute relative error (MARE). All measures are explained in
Subsec. 3.3.

3.2. Data, the ANN’s structure and learning parameters

Data. All data were taken from the conveyed uniaxial tests. For each sample
1000 experimental strain and respective stress values were taken. These data and
appropriate samples’ apparent densities were then grouped into sets {εi, ρi, σi},
where i = 1, 2, . . . , n, with n = 12 · 1000 = 12000. Arguments for ANN were
assumed as n vectors Inputi = [εi, ρi ]T; the corresponding experimental stresses
from i -th data sets were assumed as the respective n targets Targeti = σi.

The procedure of normalisation, i.e., the linear transformation of data into
the range 〈−1, 1〉, was performed. Normalisation is not necessary for neural net-
work calculations; however, it is claimed to have good influence on the method’s
convergence [33]. The Matlab inbuilt function ’mapminmax’ was used for this
purpose [34–36]. The transformation was done according to Eq. (3.2):

(3.2) V ′ =
V − Vmin

Vmax − Vmin
· (V ′max − V ′min) + V ′min,

where V is the original value, V ′ is the transformed value, V ′max and V ′min are
original range boundaries, and V ′max and V ′min are desired range boundaries, here:
−1 and 1.

The ANN’s structure. Before analysis, a general shape of the network had
to be chosen as a presumption. Experimental curves showed high non-linearity,
yet were smooth and generally similar in shape. This fact constituted the pro-
vision that one hidden layer and one output layer should be enough. The non-
linearity could be addressed by a non-linear activation function in the hidden
layer and then linearised in the output layer. Hence, the authors decided to per-
form the analysis using a two-layer feedforward neural network implemented in
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Matlab. The first layer was the hidden layer, and the second was the output layer.
The activation function for the hidden layer was tansig, i.e., a hyperbolic tan-
gent sigmoid transfer function, mathematically equivalent to th [34]. The output
layer had a linear activation function. The chosen architecture is in agreement
with the standard solution for fitting problems, which is: “the multilayer percep-
tron, with tansig neurons in the hidden layers and linear neurons in the output
layer” [37].

Two variants of the hidden layer were assumed, leading to the creation of
two networks. In the first case, the hidden layer consisted of 3 neurons, while in
the second one – of 15 neurons (see Fig. 3). The number of neurons was chosen
such that they represent a reasonably simple (3) and a complex (15) case [37].
The number of neurons in the output layer was chosen as one in accordance with
a single variable output [37].

Fig. 3. The used ANN structures. Top: the structure with 3 neurons in the hidden layer;
bottom: the structure with 15 neurons in the hidden layer.

Learning parameters. The ANN modelling procedure consisted of three
stages: training, validation and test. The measurement data was divided in the
following proportions between the three steps: 60% for training, 20% for valida-
tion and 20% for test. The assumed training algorithm was Levenberg-Marquardt
[38–40]1) with mean square error (MSE) taken as the performance function.
Other training parameters included:
• performance function goal: 0;
• minimum performance gradient: 10−10;

1)According to [41], the algorithm was first reported by Levenberg [38] but also indepen-
dently rediscovered by: Marquardt [39], Girard [42], Wynne [43] and Morrison [44].
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• maximum validation failures: 6;
• learning rate: 0.01;
• momentum: 0.9;
• maximum number of epochs to train: 1000.

3.3. Results

A summary of numerical values of results is presented in Table 2 and de-
tailed plots are depicted in figures: Fig. 4 – the relation between targets and out-
puts for the ANN with 3 neurons, Fig. 5 – the relation between targets and
outputs for the ANN with 15 neurons, Fig. 6 – error histograms, Fig. 7 – relative
error histograms. Figure 8 – the performance function. In the following sections,
bottom indices 3n and 15n will be used to indicate whether a discussed magni-
tude refers to the network with 3 neurons or with 15 neurons, respectively. The
terms: correlation coefficient R, coefficient of determination R2, error Err, mean
absolute relative error MARE and mean square error MSE will be explained in
the course of this section.

Table 2. Results from the ANN analysis for the networks with 3 and 15 neurons.

Parameter 3 neurons 15 neurons
correlation coefficient, R 0.98265 0.99001
coefficient of determination, R2 0.96560 0.98011
interval of most error instances, Errmost [MPa] [−0.7768; 0.5316] [−0.1477; 0.104 ]
mean absolute relative error, MARE 0.27545 0.09251
mean square error, MSE [MPa2] 0.3107 0.1796
epoch no. for the best validation performance 130 89
epoch no. for validation fail 136 95

The relation between targets and outputs. Figures 4 and 5 show out-
puts σi,otpt plotted against targets σi for networks with 3 and 15 neurons, respec-
tively. In each figure, both top graphs and bottom left graph depict the corre-
lation between outputs and targets for each learning stage separately: training,
validation and test. The bottom right graphs present the correlation between
outputs and targets in all learning stages together. The ideal match between ap-
proximated and experimentally measured values of stress would result in the
following formula: σotpt = 1 · σ + 0. Formulas for the linear fit obtained for
both analysed networks for all learning stages together are close to the ideal
approximation formula:

σotpt.3n = 0.96 · σ3n + 0.13,

σotpt.15n = 0.98 · σ15n + 0.06.
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Fig. 4. Linear regression of outputs versus targets for the ANN with 3 neurons in the hidden
layer: top left for the training stage, top right for the validation stage, bottom left for the test

stage and bottom right for all data.

Two standard indicators of linear correlation were calculated: R – the Pear-
son correlation coefficient, and the coefficient of determination R2, assumed as
the square of the correlation coefficient. Both measures were determined for all
three stages (training, validation and test) together. Values of the correlation
coefficient were: R3n = 0.98265 and R15n = 0.99001. The coefficients of determi-
nation were equal to: R2

3n = 0.96560 and R2
15n = 0.98011, which means that in

both cases the variation of outputs was very well explained with the variation of
targets (R2 ≥ 0.9 = 90%).

However, even though numerical values of the R2 coefficients were in both
cases similar and both very good, it can be observed that, when comparing the
plots in Figs 4 and 5, the graphs for the ANN with 15 neurons are much closer
to a straight line than for the one with 3 neurons. It is a provision that the



VERIFICATION OF APPLICATION OF ANN MODELLING. . . 279

Fig. 5. Linear regression of outputs versus targets for the ANN with 15 neurons in the hidden
layer: top left for the training stage, top right for the validation stage, bottom left for the test

stage and bottom right for all data.

network’s structure should be adjusted in terms of the number of neurons in
the hidden layer.

Further analysis of Fig. 5 leads to the observation that (∼ 4 –∼ 9) MPa is
the stress region, which is the least fitted. This interval can be identified as the
second part of the plateau region and the beginning of the post-plateau region in
the stress-strain plot (compare: Fig. 2). This indicates that data might require
trunking into sets with regard to characteristic stress intervals.

Moreover, in Fig. 5, it is visible that one sample was problematic for the
network to fit. One cannot uniquely identify which of the samples caused this;
however, it could be one of the two specimens which had an apparent density of
0.36 g/cm3. This assumption is based on the fact that in spite of equal apparent
densities, the compressive responses of the discussed samples were not identical
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(see Fig. 2). This might be attributed to the fact that one of the specimens
belonged to the prototype group and the other to the regular group. Thus,
introducing a third entry in Inputi vectors, along with strain and apparent
density, which would indicate whether a sample belonged to the ’P’ or ’R’ group,
could improve ANN analysis results.

Errors. Errors are defined as the difference between a target and the corre-
sponding network’s output:

(3.3) Erri = σi − σi,otpt.

Error histograms for both networks are depicted in Fig. 6. It can be seen that
the proportion of error instances between the three steps, namely: training (blue),

Fig. 6. Error histograms: top for the ANN with 3 neurons in the hidden layer;
bottom for the ANN with 15 neurons in the hidden layer.
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validation (green) and test (red), is very much about equal to the proportion
between input data for each of them (60% : 20% : 20% respectively). This fact
implies that the assumed training algorithm is appropriate, since it results in
a uniform propagation of errors onto the data sets.

In both used networks the distribution of errors has a clear maximum of in-
stances which is located around the zero error (Err = 0). This can be interpreted
as a good potential of the used algorithm for the convergence between outputs
and targets.

As for the ranges with most error instances, in the case of the 3 neurons
network errors occur in a broader interval than in the 15 neurons network:

Errmost
3n ∈ [−0.7768; 0.5316] ,

Errmost
15n ∈ [−0.1477; 0.104] ,

which confirms the earlier conclusion (in the previous Paragraph: The relation...)
on the need of adjustment of the ANN structure in terms of the number of
neurons.

Relative errors. Absolute relative errors are defined as the absolute value
of the ratio of the difference between a target and the corresponding network’s
output over the target:

(3.4) AREi =

∣∣∣∣σi − σi,otpt

σi

∣∣∣∣ .
Figure 7 depicts histograms of absolute relative errors for networks with 3

(top) and 15 (bottom) neurons. Data for all learning stages – training, validation
and test – are depicted together with one colour. The graphs are truncated
at ARE = 3 (in order to give better clarity of the graphical representation);
however, only 12 instances of AREi were larger than 3 for each network. A large
majority of AREi was smaller than 7.5%: the number of such instances for the
network with 3 neurons was more than 9000, on the other hand, the respective
number of instances for the network with 15 neurons was about 9800.

Additionally, mean absolute relative error was calculated according to the
following formula:

(3.5) MARE =

n∑
i=1

AREi

n
,

where i = 1, 2, . . . , n, with n = 12000.
The obtained values of MARE were: MARE3n = 27.545% and MARE15n =

9.251%. The result for the ANN with 3 neurons is not satisfactory. MARE15n
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Fig. 7. Absolute relative error histograms: top for the ANN with 3 neurons in the hidden layer;
bottom for the ANN with 15 neurons in the hidden layer.

would be acceptable in case of rough engineering applications (less than 10%),
but for more reliable modelling, the network structure should be adjusted. How-
ever, obtaining a single-digit result in the preliminary study is promising and
confirms that with a better calibration of network parameters the approxima-
tion could reach a very good level.

Network’s performance and MSE. A standard choice of the performance
index in multilayer networks is MSE [37]. Hence, this magnitude was assumed
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as the performance function in the present study. The mathematical expression
for MSE was:

(3.6) MSE =

n∑
i=1

(σi − σi,otpt)
2

n
,

where i = 1, 2, . . . , n, with n = 12000.
The goal for the performance function was set as 0 and the number of valida-

tion failures was set as 6. Figure 8 presents the course of the performance function

Fig. 8. The course of the performance function: top for the ANN with 3 neurons in the hidden
layer; bottom for the ANN with 15 neurons in the hidden layer.
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with regard to epochs. Circles mark the achievement of the validation failures
number during the pursuit of the goal. In the case of the 3 neurons network the
best obtained MSE in the validation stage was MSEvalid.best

3n = 0.2874 MPa2 and
it was achieved for the epoch number 130. For the ANN with 15 neurons the
result was MSEvalid.best

15n = 0.18763 MPa2, for the epoch no. 89.
MSE was also assumed as one of the auxiliary criteria for the assessment of

the quality of the approximation. However, this time MSE was calculated for all
learning stages together. The obtained results were MSE3n = 0.3107 MPa2 and
MSE15n = 0.1796 MPa2. One can observe that the more complex network pro-
duced better results, which indicates that the approximated function is rather
more complex than simple and confirms that adjustment of the number of neu-
rons in the hidden layer could be required.

4. Conclusions

Comparison between results for the two investigated networks – with 3 and
15 neurons in the hidden layers – show that more neurons produced better ap-
proximation: R2

3n = 0.96560 and R2
15n = 0.98011; MARE3n = 27.545% and

MARE15n = 9.251%; MSE3n = 0.3107 MPa2 and MSE15n = 0.1796 MPa2.
This indicates that one of the objectives in further research should be the ad-
justment of the number of neurons. It seems that calibration of other network
architecture or learning parameters, like, e.g., validation threshold or propor-
tion of data designated for each learning stage, could lead to a better quality of
modelling [45].

As for the data, the following aspects also need to be included in future
research. First, the data chosen for the present study was from compressive
experiments for samples which had some imperfections, which might have influ-
enced the modelling. This fact could be included in the introduction of the third
input variable, which would indicate to which of the groups a considered sample
belonged. Also, the compressive behaviour has clear phases (initial slope of the
stress-strain curve, plateau and ‘hardening’) and those phases were also reflected
in the ANN target-output accuracy analysis; hence, data grouping into intervals
should be taken under consideration.

In the end, a general conclusion can be posed that the obtained results
(R2

15n > 96% and MARE15n < 10%) confirm that Relation 3.1: σ = f(ε, ρ)
can model the compression of open-cell aluminium with the use of ANN. Ver-
ification of this hypothesis was the aim of the presented research. Networks
used in the study were two-layer feedforward networks with tansig activation
function in the hidden layers and linear activation function in the output
layers.
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