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DETERMINATION OF GENERALIZED INERTIAL FORCES
IN RELATIVE MOTION OF MECHANICAL SYSTEMS
OF A RAILWAY-VEHICLE TYPE

1 KISILOWSKI AND K. ZBOINSKI (WARSZAWA)

Comparing with what is known from the literary sources, this paper presents a simpler
method of determining the inertial forces which result from the relative motion for the mechanical
systems consisting of many rigid bodies with holonomic and nonholonomic constraints. The
method is based on a theorem, the proof of which will be included in this work. Although the
presented method has becn worked out primarily to meet the need of modelling railway vehicle
vibrations, for which the assumptions of the theorem are easily satisfiable, it can also be applied to
any mechanical system satisfying the mentioned assumptions.

1. INTRODUCTION

Nowadays it is common to apply nonlinear mathematical models in
mechanics and this is due to the growing capabilities of carrying out numerical
analyses of such models. The same happens in railway vehicle dynamics.
Railway vehicle vibrations can be treated as relative motion in relation to the
transportation coordinate systems (i.e., moving at a constant speed along an
ideal track, that is without any geometrical irregularities and purely rigid). In
the case when the motion of a vehicle takes place either along a circular railway
track or a transition curve, the above-mentioned coordinate system are
noninertial with respect to the system which is rigidly connected with the earth
and which, in turn, can be treated as the inertial one. This is why in the
equations of vibrational motion of a vehicle that moves along a curved track
there should appear the so-called imaginary (this term is also known and we
shall use it here interchangeably with the term “inertial”) forces [2, 4] which
-result from relativity of motion. In [5] it has been shown that the maximal
values of the components defining the imaginary forces are of the same order as
the maximal values of other components with nonlinearities of a kinematic
type. These last components appear in the equations of motion as a result of
differentiating the kinetic energy of the system according to one of the chosen
. formalisms of building the equations of motion [1, 4] — the formalism should
be taken from Analytical Mechanics. Thus it would be an inconsistency to
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ignore the inertial (imaginary) forces in the equations of relative motion where
nonlinearities of a kinematic type are included.

1t appears, however, that the determination of forces of interest to us may
be difficult in the case of a system consisting of even a few rigid bodies, the
motion of which is restricted by constraints. The difficulties grow along with
the increase in the dimension of the system and the number of constraints.

2. (GENFRALIZED INERTIAL FORCES

In the case of a single free riéi_d' -boaj'in relative motion, both the scalar
equations and ipertial forces can be determined basing on the vectorial
equations of relative motion {2].

MPye = Pmoxv—mexr,—mox(®xry)—2men X v,
2.1 . - 1
J¥6 +@ x J*e' = Mo—J*e -0 xJ*¥o 20" % (J*—ES*E)(D

where the dot “*” designates (here and throughout the paper) the. time
differentiation, m is the body mass, J is the body inertia tensor, p,,. is the vector
of the body mass center acceleration in relative motion, P is the main vector of
~ the external forces, M is the main vector of the moments of force in relation to
the body mass center, v is the transportatlon linear velocity vector, @ is the
transportation angular velocity vector, rg is the radius-vector of the body mass
center in a noninertial transportation system, @' is the body angular velocity in
relative motion, E is the unit tensor and 9 is the first invariant of the tensor J.

The first of the equations (2.1) describes the motion of the body mass center
C while the second one describes the spherical motion round this center. While
building the scalar equations on the basis of the second of the equations (2.1), it
is advisable to express it in the system rigidly connected with the body — the
system of the principal and central axes of inertia of the body would be the best
one since then the components of tensor J are constant. However, from the
formal point of view, it is not obligatory. To stress the fact that we shall prefer
expressing this equation in the system of the principal central axes of inertia,
the tensor J has been distinguished by the index “*™.

In the case of the systems with constraints, we have to apply one of the
formalisms derived from Analytical Mechanics in order to build the equations
of motion. This, as we know, results from the fact that it is impossible to
consider the equations of constraints directly in the vectorial equations of
a rigid body in relative motion (these equations are a direct adaptations of
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forces of inertia should be added to the remaining generalized forces without
regard to both the applied formalism of building the equations of motion and
to whether the assumed coordinates are quasi-coordinates |2, 4] or generalized
coordinates [1, 2] (Lagrange’s coordinates [3]). And thus, for the commonest
Lagrange’s formalism {1, 3, 4], the equations of relative motion have the
following form [2]:

d(eT\ or
(2'2} E(aé ) aqa QZO‘+QBJ= G = 1’ vy k:

where T is the kinetic energy of the system in relative motion, ¢, is the
generalized coordinate, Q,, are generalized external forces, Qp, are generalized
inertial forces and k is the number of degrees of freedom of the system [1, 3, 4].
In [2] it has also been shown that the generalized imaginary forces Qp,
which should be adjoined to generalized forces @, while building the
differential equations of relative motion for a free rigid body (its posmon is
defined by ! independent generalized coordinates ¢, where A =1,...,1=6),
can be expressed in the following way™®: -

(23)  Qus— —mn (‘Z"q-co v)aﬁ—:n[mx(mxro)]aqf

aq; A
do' do < Oy dode’
dg,  dr °aq, = didg,
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The meanings of the designations appearing in Eqgs. (2.3) arc the same as of
those appearing in Egs. (2.1). Only the symbol d'/di requires an explanation. Tt
is the designation of the local derivative in the transportation coordinate
systemn, Equation (2.3) has been obtained in [2] for a free rigid body, starting
from the expression that defines generalized forces of inertia for the system of
m particles. Following the {ransition from the system of m particles to a rigid
body, it can be easily noticed that there would be no qualitative differences if,
instead of passing to a single rigid body, we pass to the system of p < m of such
bodies. We have done it, and thus the equation equivalent to Eq. (2.3) receives
the form

(' The following definitions [2] have been assumed for the componerts appearing at the
right-hand side of Eq. {2.3); the first component — generalized inertial forces of transtatory motion;
the sum of the second and the third one — generalized centrifugal forces of inertia; the sum of the
fourth and the fifth — generalized rotational forces of inertia; the sum of the sixth and the scventh
- generalized gyroscopic forces.
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With that, the position of such a system is defined by the coordinates g,, to the
number of [+ p = 6p. We shall also define the index « = Ar6r—1)=1,...,6p
that is a substitute for An. For a single rigid body, Eq. (2.4) passes, of course, to
Eq. (2.3). . : .

If we want Eqs. (2.3) and (2.4) to be used to determine generalized forces of
inertia, the coordinates g, and g, must fulfill certain conditions. These have, of
course, been given in Egs. (2.2). Namely, they must be assumed for each of the
free bodics in such a way as to let three of them define the position of the body
mass center, and the other three define the body spherical motion round the
mass center (to express it more precisely, the angular motions of the coordinate
system rigidly connected with the body in relation to the transportation
system), This restriction imposed upon coordinates is easy to be guessed by
comparing Eq. (2.3) with the inertial forces int Eqs. {2.1) — these forces are
expressed by the terms appearing in Eqgs. (2.1) appropriately after P and M. It
is obvious that the same results will be obtained on the basis of Egs. (2.1) and
(2.3) on condition that we assume the same coordinates for both cases.

Lei us agree that from now on, to distinguish the inertial forces obtained for
a free rigid body on the basis of Eq. (2.3), we shall designate them with the
index “'”. And so

Opy = Q:Bl: QBi = Q%za QB3 = Qi;sa QB4 = Qia:ts. QBS =Qgs, Ous— Qﬁ%-

If we restrict the motion of the system of free rigid bodies with holonomic
constraints to the number of w < 6p of the form

(2.5) a,1(q, . '('Ik)q.l +a,(q; ... Qk)éer —|-aw(q1 o Qk)éa =0,

where k = (6p—w) is the number of degrees of freedom of a holonomic system
[1, 3, 4], then Eq. (2.4), as the onc that defines generalized imaginary forces, is
still in force. However, it is necessary, while determining Qp, to consider Egs.
(2.5) in such a way as to make (2.4) dependent on independent coordinates g,
(c=1,..., k). )

Equation {2.4) can be criticized considering its practical application to
determine imaginary forces for mechanical systems consisting of several bodics
with imposed constraints. And so, there is a flaw in it — it requires arduous
determining of k expressions of Qp, of a much more complicated form in the
case of the systems with constraints than the form of Qpy, Qr2, Ops, O, Uss,
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QOFs expressions which are obtained on the basis of Eq. (2.1) or Eq. {2.3). At the
same time the cost of labour increases significantly along with the increase in

~ the number of degrees of freedom of the system and in the number of equations
of holonomic constraints. Determination of Qp;, ecxpressions is la-
bour-consuming, mainly due to the following activities and factors: deter-
mination of the multiple vector and scalar products of the vectors on the basis
of their components, determination of these components and the fact that the
components of the tensor J are not, in general, constant. Thus, similarly to Eq.
(2.1), it is convenient to express the components of inertia tensors J, in the
systems of the principal and central axes of inertia of an appropriate body. But
then, the components of the vectors that appear next to J, must be expressed
in these mentioned systems. Later on, it requires a projection of the resultant

“vectors, expressed in the sysiems of the principal central axes, into directions
matching the assumed generalized coordinates. If, for instance, we considered
a system of 21 degrees of freedom, 21 equations of holonomic constraints and
consisting of 7 rigid bodies (a model of an eight-wheel car has similar
dimension}, then we would have to perform operations on about 600 different
components of vectors and fensors appearing in Eq. (2.4}

The above-mentioned difficulties connected with the practical application
of the relationship (2.4), led us make an attempt to formulate a less complicated
method of determining the forces of inertia. Tt was advisable that the method
would make use of the expressions that define imaginary forces for a free rigid
body. It was also important to make the method usable for any railway vehicle,
using at the same time the specific properties of mechanical systems of such
a type in order to simplify the method.

These properties allow reducing our considerations to the case when the
transportation for each of p rigid bodies is common (i.e., the systems in relation
to which the relative motion of each bhody is considered are motionless in
relation to one another) and when the coordinates that define the position of
each body fulfill a certain condition. We shall demand of the coordinates (three
linear and three angular for ¢ach body) to be defined analogically. The linear
coordinates must define the position of the mass center for each of the bodies,
and the angular ones should define the mutual position of two systems: the -
system of the principal central axes of inertia and the transportation system
(e.g., these could be Euler’s angles [2, 3, 4] for all the bodies). Having the
coordinates defined in such a way, the imaginary forces for the system of p free
rigid bodies are defined by 6p equations of Eq. (2.3) type, which are similar for
each of the bodies and differentiated only by the index n. At the same time this
similarity refers also to the form of the equations obtained after introducing the
components of both vectors and tensors into them. The above sentences reduce
themselves to the fact that for the conditions as described above, if we have the
imaginary forces written for one free body, then on this basis we can write them
for cach of the remaining (p—1) free bodies, giving all guantities an index
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matching each body. In the case of a system of p rigid bodies with holonomic
constraints, a statement analogous to the previous one, basing directly on Eq.
(2.4), is impossible. And thus the following theorem has been formulated and
proved.

3. THE THEOREM AND THE PROOF

THEOREM. If generalized coordinates that define the position of the system of
p rigid (free) bodies are determined analogically for each of the bodies and the
transportation is common for them (in the sense understood in the above
paragraph) and if we restrict the motion of the system with the help of w < 6p
holonomic constraints, then in order to determine generalized imaginary forces
that would match the accepted independent generalized coordinates, it is enough
to know generalized imaginary forces for one of the p bodies that is treated as the
free one. With that, the imaginary forces for the system of p bodies with imposed
holonomic constraints are the linear functions of the imaginary forces that refer to
the system of the free rigid bodies.

Proof. Let us first consider in Eq. (2.4) the dependence {1, 2, 3, 4] which is
obligatory for the generalized coordinates

oy OV
aQAn aé,m )

Then let us consider any system of p free rigid bodies. And so we will have
6p equations of the (2.3) type which are similar in hexads for-cach of the bodies
and different in the index n which distinguishes the body (this statement refers
to the forms of these equations before the components of vectors and tensors
are introduced into them — compare it with a similar statement which appears
4 sentences before the text on the theorem). Then we can write

(3.1)

3 [
(32) V::n = Z e}.néin and m:l = z ezndkm
. i=1 A=4
where ¢, for A=1,2,3 are the linear generalized velocities and g, for
=4, 5,6 are the angular ones. The vectors e, are the versors of the axes
which are defined by the directions of action of the generahzed velocities. FFor
Egs. (3.1) and- (3. 2) it will be

o, oVl
(3.3 P~y A=1,2,3 and 2 =0, A=4,5,06,
( ) aq;ln g afﬂn ]
! . a !
(3.4) 6(.0" =0, A=1,2,3 and (.ﬂ" =e;,, A=456.
aq}m ) aq/ln

In the case of Egs. (3.3) and (3.4), the values of Qg,, forces are the sums of the
scalar proaucts of the versors e, and of vectors appearing in front of them (in
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the formula (2.4)). Since |e;,| = 1, then from the definition of the scalar
products of vectors it results that ihe forces Qp,, are simply the lengths of
projections of the vectors which appear in front of the versors e, into the
directions of these versors. '

Now we shall introduce the equations of holonomic constraints to the
pumber of w < 6p into the system. We shall also demand of Egs. (2.5) to
assume the following form:

3.9 4o = Aa (g, . 44 + Aeldy - 4dda+ -+ Aaldy - G

where ¢q, ... q, form a set of independent generalized coordinates [1, 4]} and g,
arc dependent coordinates where d = (6p—w+1), ..., 6p. Equation (3.5), due
to using a duplex indexing, can be written in the following form: '

id 6
(36) éts = z 2 Arsmq.',uta
t=1u=1

where the coefficient A4,,,, is the function of only the independent coordinates
s s 15 the dependent generalized velocity (¢ # g, S0 if © = p, then s # t or
ifs=t,thent+# pu);t, u=1...6;s,t=1...p; the number of coordinates g, is
~ equal to w, and the number of coordinates g,, is equal to k. Of course, still if
7, u=1,2,3, then the generalized velocity is linear and if 7, p =4, 5, 6, then
it is angular. If we introduce Eg. (3.6) into Eqgs. (3.2), then a change in the form
of (3.2) will take place for the expressions for which n =35 and

)] 6
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A#g T t=1p=1
- p 6 .
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Of course, in general, the number of the versors e,; and e, for the expressions
(3.7) and (3.8) equals three for ecach of them. H we differentiate these
expressions, then in the following cases we shall obtain

v, '
‘jL =0, for A, t=1,2,3,
0Gss
OV
(3.9) 5(—1—— =Y e Agute, for A,r=1,2,3 and
Moo t=s, u=1,2,3, pn#r1,
vl
= =Y e Ao for A,7z=1,2,3 and
aq‘ut T

t=s, u=4,50,
or A,t==1,2,3 and
t#Es, u=1,..., 0.
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and
a r
6°.°S=0, for 1, t=4,5,6,
s
3.10 Jm.,
(3.10) a(f)* =Y edyute,, fori t1=4,56 and
T t=s, u==4,56 u#r,
Jw!
6;'93 = e Argu for A, t=4,5,6 and
Jiks T

t=s, u=1,2,3
or A, t=4,56 and
t#s, u=1,...,06.

Now let us pay attention to the fact that the equations of constraints given
by Eqgs. (3.5) and (3.6) depend, in general, on k generalized velocities, Tt may,
however, happen that none of w equations of constraints will depend on one or
a greater number of velocities g,,. This means that the appropriate coefficients
Aeser = 0. In such a situation both the second and the third of the expressions
{3.9) and (3.10) will have the right-hand sides equal appropriately to e, and 0.

Now we shall assume that n = ¢t and we shall see what form Egs. {3.2) will
take after differentiating them by ¢, and g,. We shall consider, one after
another, such cases as those for Egs. (3.9) and (3.10). We shall obtain

I
avy,

6érs

(3.11), ~0, forAt=1,2,3

~ the second case and the first part of the third one are included in the expression
-(3.9) since there t=s

v,
we=e,, ford, t,p=1273 t#s,
i
(3.11}, 4 ’
0V
— =10, for A,7=1,2,3, t+#5s, u=4,5,6,
04,

which is consistent with Eqgs. {3.3) and

(3.12), 2;’ —0, for 4 v=4,5,6

the second case and the first part of the third one are included in Eq's. (3.10)
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since there = g§

5 ’
5?-5:0, for 4,1=4,56, t#5, p—1,2,3,
(3.12),.5 a(:'t
1 f— : —
c'?q';_e”b for A, t,u=4,56,1t+#s,

which is consistent with Egs. (3.4).

Considering now Egs. (3.9) up to Egs. (3.12) in Eq. (2.4) for the successively
regarded cases; we shall notice that

Ops =0, (the first case),

313
(3.13) Oy = 2.3 Awsir  OBes+ P, (the second and the third case),

s

where “'”, as before, distinguishes the free body while Q5% and 05, are equal to
generalized inertial forces which match the coordinates ¢, and g, for the free
bodies. The summation after s and 7 means that, as a result of it, we shall have
to take, in general, w components of A, - Q% type. However, we should
remember that it may happen that 4., =0, and that the number of
components may be smaller than w. In particular, they can be equal to zero for
all the pairs of indices vs. Then Qp,, = Qp,,. In the expression (3.13), we have
shown that generalized imaginary foces for the system of p rigid bodies, which
is restricted by holonomic constraints, can always be presented in the form of
linear functions of the imaginary forces obtained for the system of the same
p bodies which are treated as free. The expression (3.13) closes the proof since
the forces Qg Q% can be built by appropriate indexing on the basis of the
forces Q1. Qh2, Qbss Oba, Ons, Ons Which are valid for a single free rigid body
(see some closing sentences preceding the text on the theorem). The above
theorem and the proof can be found only in the dissertation [5] since they were
worked out in the process of writing it.

4, PRACTICAL RULES FOR APPLYING THE THEOREM AND THE CASE OF
' NONHOLONOMIC CONSTRAINTS

To make the practical application of the theorem less complicated, we give
the following rules which define the sequence of operations indispensable in
- determining imaginary forces for a holonomic system when the forces for
a single free rigid body are already known (if the assumptions of the theorem
are, of course, satisfied).

1. After determining the inertial forces for a single rigid body, we should
choose indices for each of the bodies of the system and then, with their help, we
should designate coordinates, velocities, accelerations and mass quantities that
appear in the forces Qp;, where 1 =1...6, given by the formula (2.3).
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2. We should write the equations of holonomic constraints for the accepted
independent generalized coordinates in a special way. This should be done in
such a way that only the generalized velocities, which do not belong to the set
of independent generalized velocities, would appear at the left-hand side (just as
it is in Eq. {3.6)).

3. We should determine generalized imaginary forces. The forces which
correspond to the coordinates that do not belong to the set of independent
coordinates should be assumed to be equal to zero. The forces which
correspond to the independent coordinates that do not appear in the equations
of constraints should be assumed to be equal to the appropriate forces for
a free body and each of the quantities mentioned in 1) should be designated
with an appropriate index for each body. The forces which correspond to the
independent coordinates appearing in the equations of constraints should be
calculated as a sum. It is the sum of an appropriate force for a free body (with
an appropriate index) and of certain expressions. The latter are of a form equal
to the product of the coefficient which appears in the equation of constraints,
satisfying 2), in front of the coordinate under consideration and the force which
corresponds, for a free body, to the coordinate that in the equation of
constraints appears at the left-hand side (all quantities with appropriate
indices). To make it clearer, see Eq. (3.13).

4. Using the equations of holonomic constraints in the form (3.6), i.e,, in the
form that satisfies 2), we should write generalized inertial forces obtained by
means of 3) as the functions of independent velocities and coordinates.

5. Later on, while building the equations of motion, the forces obtained on
the basis of 1) to 4) should be added, e.g., according to the rule (2.2), to the
right-hand sides of the equations. One should remember here -that while
building the left-hand sides of Eqgs. (2.2), it is obligatory to use the same
indexing for each of the bodies, as it happens while determining the inertial
forces.

In the case of a nonholonomic system where the number of equations of
~ constraints equals b and the number of degrees of freedom [ = (k—b) where £ is
the number of coordinates which describe the position of the system, we should
do what follows: we determine k generalized imaginary forces as if it were
a holonomic system or a free one if there are no holonomic constraints. Then
we treat these forces in the same way we treat generalized external forces by
carrying out operations which are required for them in the accepted formalism
of building the equations of a nonholonomic system.

5. CONCLUDING REMARKS

The above theorem can make it much more easier to determine generalized
forces of inertia for mechanical systems consisting of many bodies and having
a great number of holonomic constraints. When one starts using it, it can be



DETERMEINATION OF GENERALIZED INERTIAL FORCES 589

fully appreciated. In [5] it has been used practically twice. One case was
modelling vibrations of a wheel set considering the constraints in the
" track-wheelset system. Then it was applied while modelling vibrations of an
eight-wheel freight car. The first of the models had 4 degrees of freedom
(2 equations of holonomic constramts) in generalized coordinates; the second
one had 21 degrees of freedom {21 equatlons of holonomic constraints} and it
was a model in quasi-coordinates.

It seems that the presented method of determining the inertial forces in
relative motion is a certain noticeable step forward in polishing this problem
up for large mechanical systems consisting of rigid bodies.
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STRESZCZENIE

WYZNACZANIE UOGOLNIONYCH SIE. BEZWEADNOSCE W RUCHU WZGLEDNYM
UKLADOW MECHANICZNYCH TYPU POJAZDU SZYNOWEGO

Przedstawiono prostsza, niz znane z Hieratury, metode wyznaczania sil bezwladnosdci
wynikajacych z ruchu wzglednego dla uktadow mechanicznych ztozonych z wieln bryt sztywnych
z wigzami holonomicznymi i nieholonomicznymi. Metoda oparta jest na przedstawionym w pracy
twierdzeniu i jego dowodzie. Metode poczatkowo opracowane do modelowania drgan pojazdow
szynowych {dla ktérych zalozenia twierdzenia daja si¢ tatwo spelnic), mozna ja réwniez stosowad
dia dowolnych ukladdéw mechanicznych o tych samych zatozeniach.

PE3IOME

ONPENEJEHUE OBOBUIEHHLIX CUJ MHEPITMM B OTHOCWTEJIBHOM
JIBWOKEHWN MEXAHUYECKUX CUCTEM TUITA PENLCOBOrO TPAHCIIOPTHOIO
CPE/ICTBA

Io CPABHCHWIO € TEM, UTO H3IBECTHO W3 JIHTEPATYPBI, HACTOAAad CratThfl TPEOACTABIACT
Gouce H[JOCT]:II‘:I METOO OIIPCACHCHNA CHII HHEPITHHA, BRITCKAIONIHX A3 OTHOCHTCILACIO ABUMKCHH,
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AIA  MEeXaHUYECKWX CHMCTEM, COCTOSINMX M3 MHOTHX JKECTKHX Tl © T[OJOHOMWYCCKHMHE
H HCrOMOHOMHYECKHMM cBs3aAMM. Meton 0asupyeT H4 TEOPEMC, JIOKA3aTeNLCTBO KOTOpOH
comepxaTca B pabore. HecmoTps ®a TO, YTO IPERCTABACHHBEH MeTon paspaborad
HEpBOHAYAALMO IS TOTPeDHOCTEH MOOCTHPOBAHMS KOJEO0aHUH pENbCOBBIX THAHCIOPTHBIX
CPENCTR, I KOTOPHIX TPEANONONCHHA TCOPSMB] JICTKO YAOBJETBOPAIOTCA, TO OAHAKO METO/
MOXCT OBITE HPHMEHEH JU MPOH3BOJLHAIY MEXAHMYECKHR CHCTEM, YIOBIETBOPHIOLIAX
YHOMAHYTHIM HAPEATEOMCKCHEIM.
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