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B R 1 E F N O T E S

EXACT SOLUTIONS OF A DISCRETE VELOCITY MODEL OF A
GAS WITH MOLECULES DISSOCIATION

R. MONACO (GENOVA)and T. PLATK O WS K1 (WARSZAWA)

-

We prapose an elementary discrete velocity model of a gas, describing dissociation
of diatomic melecules. We found exact analytical solutions to the following problems:
1) wave propagation in an unbounded domain; 2) boundary value problem with boundary
conditions admitting sources on the walls,

1. INTRODUCTION

Lately interest has been devoted to the construction of discrete velocity
models of the Boltzmann equation for gases subjected to chemical reaciions
(see, for instance, [1,2]). Such models generally have a rather cumbersome
nonlinear structure so that the study of fluid dynamical problems as, for
instance, shock-wave propagation or the stationary state of a gas confined
in a bounded domain can be perfomed only by numerical computations.

On the other hand it is known [3,4] that some discrete models for in-
ert gases admit exact solutions for the afore-mentioned problems. For this
Teason, in this note we propose an elementary discrete velocity model of
the Carleman type for gases with dissociation of diatomic molecules, which
provides exact analytical solutions for wave propagation in an unbounded
domain, and for a stationary boundary value problem.

2. THE MODEL

Consider a mixture of two gases with velocities attaining on alinez € R :

atoms A with velocities v; : |v;} = 1 and mass m ;

molecules Ay with velocities w; : |w;| = p and mass 2m where i = 1,2
denotes particles moving, respectively, in the positive and negative directions
of the z-axis.

Let N;(t,z), M;(t,z) be the distribution functions of atoms and molecu-
les, respectively. '
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Atoms are treated as mass points, and therefore we assume that their
collisions do not change the distribution functions N; (Knudsen gas as-
sumption). Collisions between molecules with incoming opposite velocities
w1, W lead to chemical dissociation, i.e.

(2.1) A4+ A — A+ A+ A+ A

with two atoms having velocity v; and two velocity vg; such a hypothesis
assures momentum conservation throughout a collision.

Moreover, under these assumptions one can calculate the energy of the
chemical link ¢ > 0; in fact energy conservation in the collision process gives

8=2m(1—u2)

which leads to the constraint
p< 1

The above collisional scheme assures that the dissociation (2.1) is the only
one which leads to changes of the particle distribution functions; moreover,
it supplies the simplest possible discrete velocity model with a nonlinear
collisional term which preserves momentum. Under the above assumptions,
the evolution equations for the distribution functions of molecules can be
written as follows:

M
% + #633:1 = -@,
(2:2)
oM, 3 oMy 0
ot dr ’

where the collisional term @ takes into account the "loss” of molecules,
which is proportional to the relative velocity 2u of the colliding particles, to
the cross-sectional area S and to both distribution functions M, and M, .
Thus

(2.3) Q@ =2uSMIM; =: oMM, .

On the other hand, molecules which are the "loss” for chemical dissocia-
tion must appear in the evolution equations for the distribution functions of
the atoms as a ”gain” term. Therefore, because of mass conservation, these

. equations will be given by

ON, 8N

o T = @
(2.4

oM, 0N _

ot oz ’

Equations (2.2) — (2.4) represent the proposed discrete velocity model; note
that the equations for molecules are independent of those of atoms. Starting
from this point we will search exact solutions of such equations for two
classical fluid dynamical problems.
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3. WAVE PROPAGATION

We look for a general solution to Egs.(2.1) - (2.4) in the form of a soliton-
type expression [3), i.e.,

J.
= Treamy Nt Tres)

“(3.1) _ B
z; = kit + hyz Li=kit+ e, t=1,2

with d;, d; € R.
We prove the following proposition:

ProrosiTioN 1. Equations (2.4) admit a non-trivial posmve soliton-type
solution if

k= —ky =~k =k, hy = —hy = —hy = hy,
(32) k1 _-a(dz—dl)/2, hy IO’(d1+d2)/2,
dl — 2#d1dg J2 — Zju,dldg
di(l—p)+ea(l+p)’ di(T+p)+d2(1—p)’

d1, d; being two positive arbitrary constants.

P roof The proof is straightforward by inserting the Eqs. (3.1) into
Eqgs. (2.4), and by verifying that only the relation (3.2) assures positivity of
the distribution functions.

As a particular case of the solution found by Proposition 1, we discuss
the following travelling wave poroblem. Define: 2 = z + §t, z € R with g

being the constant propagation speed. The set of Eqs. (2.2) ~ (2.4) reads
now

B+m2h - g,

sz = ¢,

Y (ﬁ+1)dN1 = Q,
(ﬁ—l)dN2 - Q

and has three first integrals,
B+p)My—(B—p}My = L, LeR,

(3.4) (B+ )Ny — (8- 1), L, LeR,
B+p)Mi+(B+1)Ny = I3, I3eR.

il
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Below we find solutions of Eqs.(3.3) with given distribution functions of
atoms at z — —o0 and with limit conditions for molecules at +oo which
correspond to the equilibrium states without dissociation (@) = 0). In par-
ticular, we assume

for atoms
lim lecl, Bmng—CQ,
(3'5)1 z . 00
zl_l_{go Ni=m1, Jim N2 =7,
for molecules
111;1’1 M1=a. zli)I_nooM2=0,
(3.5) : .
hm M, =0, zkinooMg =a,

where a,cy,c are given data, whereas a,7,7, are numbers which can be
determined from the first integrals (3.4) written at +oo (Rankine-Hugoniot
conditions), i.e.

ptp
a = @ )
p=p
_ u+ B
M = a+ta 1+4°
_ ptp
T2 = G- aTT g’
In particular, the relationship for a provides the following implications:
i) Ca>0 = |Bl<p,
i) BeER. = a<a forward propagation,
#41) BeR, = a>a backward propagation.

First we solve the problem for molecules; with the help of the first integral
(3.4); and the limit conditions (3.5)2 the equations (3.3); are reduced to

dM; o
dzl = ﬂ P M]_(a, - Ml) s
M2 = ” ﬁ (a - Ml) 3
- 3
and therefore we obtain the distnbutlon functions for molecules, i.e.
a
Mi(z ’
W) = T explaoa/(n— B
(3.6) +8
a
My(z) = &

—B 1+exp[-aoz/(n-B)]
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From the knowledge of /M’l and M3 we then solve Egs.(3.3)3 4 for atoms.
Using the limit conditions (3.5); and the first integrals (3.4); and (3.4)3, we
obtain

_ p+p d
M(z) = a+ 1—8 1+exp[—aoz/(p—p)]’
(3.7)
p+p a

No(z) = co— 1-f 1+exp[-aozf(p—-0)}

REMARK. Positivity of the distribution functions Nl,Nﬁ is provided

under the conditions:
for forward shock-waves: —pu < 8 < %—t'_ﬁaﬁ <0,

for backward shock-waves: 0 < f < p < %_—%E .

4, A BOUNDARY VALUE PROBLEM

In this section we consider the problem of existence and uniqueness
of positive stationary states of the system of dissociating molecules in a
bounded interval for  €[-1,1] with prescribed general boundary conditions .
on both ends of the interval. Referring only to the evolution equations for
molecules, the relevant mathematical formulation reads:

dM,

H = _Q 4
(4.1) dz
dM,
s dz = ¢

with the boundary conditions {4]

r=-1 : M =aaMy + 61,
(4.2) N N

z=1 : My = aaM{ + b7,

where M 1?': = M;(z = +1), i = 1,2, o;6; are given positive parameters; note
that oy = a3 = 1 and & = 63 = 0 correspond to pure specular reflection
boundary conditions without sources.

To solve the BVP (4.1), (4.2), we insert the first integral of Eq.(4.1)1,2

(4.3) My 4+ My =1 = const >0

into Eq.(4.1); and solve the resulting logistic equation for M;. The solution
reads

1
14+ (I/M] — 1} exp[o'I(z +1)]
I—Ml(x),

My(z)

“4) M;(z)
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where I, M; are unknown constants and o/ = ¢/u. Note that, in this
problem, the total density p = My + M3 does not depend on z.

To find the unknown constants, we note that Eqs.(4.4) provide three
relationships betwen the constants:

M = I
V7 14 (I/M] — 1)exp(20'1)’
(4.5) M +M; =1,
M1+ + M; =1.

Together with Eqs.(4.2) we have then an algebraic system of five equa-
tions for five uknown constants which, after some manipulations, can be
reduced to one nonlinear equation for I:
ayl + 6, af + 68,

-6 I-68"

(4.6 exp (20'I) = IeR,

providing that we also obtain
o1l + & .
1 + a
this ends the calculation of constants in the solutions (4.4).
In such a way the problem of existence and uniqueness of solutions of

the considered BVP has been reduced to the same problem for Eq.(4.6);.
Accordingly we can now prove the following proposition:

(4.6) My =

PROPOSITION 2.
i} In the case of boundary conditions without sources (§; = é; = 0) there
exists a unique positive solution to the BVP (4.1), (4.2) if

ajag > 1;

W) I8 >0, 6> 0, and of < (1 + a1)(26:)~1 + (1 + a2)(263)", then
there exists a unique positive solution Iy > max(é;, 62).

Proof Letus ﬁrst prove (i): Eq.(4.6); provides a unique solution
Iy > 0 given by

Io= log(a1az) .

2 f
Moreover, M;(z) and M3(z) are positive, because in this case
Io 1 -I- [14]
M @
In physical terms this means that we must have production (ayag > 1)
of molecules at least at one point of the boundaries larger than adsorp-

tion at the other as a condition for the existence of a positive station-
ary solution. In the case of general boundary conditions (ii) the proof

>1.
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is a straightforward consequence of the analytical study of the left and
right hand sides of Eq.(4.6);. In fact the r.h.s. function has two posi-
tive poles for I = 8y, I = 63 it is positive monotone increasing in the range
I €]0,min(é1, 82), negative for I €] min(6;,82), max(d1, 62}, and positive
monotone decreasing for I €)max(6y, 82), +oof. Its first derivative for I =0
is equal to 016'11' 1y 025:" 1 Then if o' < az'i; 14 9-22—5'2—1, Eq. (4.6}
admits a unique solution in a point Iy > max(§y,8;). In the opposite case
Eq. (4.6); has a positive solution also in the range 10, min(éy, &2)[. 0

REMARK. In principle one can consider that either §; or 63 can be
negative numbers {sinks instead of sources). Then in the case §;6; < 0,
following the line of Proposition 2 under some ”smallness” condition for the
magnitude of the sink, one can still prove existence (but not uniqueness) of
positive solutions to the BVP.
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