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ON THE SOLUTION OF A CONCENTRATED TORQUE PROBLEM
FOR A NON-HOMOGENEQUS ORTHOTROPIC HALF-SPACE

B. ROGOWSKI (LODZ)

The exact expression for displacement and stresses in a non-homogeneous orthotropic
half-space subjected to a concentrated torque acting in the interior or or a surface are
obtained by means of Hankel transforms. '

1. INTRODUCTION

. For most applications in geomechanics the shear modulus of natural soil
deposits varies continuously with depth according to the geologic and loading
history of the soil deposit (WROTH €f al. [1]}). In addition experimental in-
vestigation of natural soil deposits confirms the presence of anisotropy (Da-
HAN et al. [2]). The incorporation of both non-homogenity and anisotropy
into the load transfer analysis would enhance the practicality of the solution
and its usefulness in engineering practice. In general, the studies involving
non-homogeneous and anisotropic elastic media are rather limited. Some
boundary-value problems involving surface loading of a non-homogeneous
half-space have been considered by KAssIR [3]; CHUAPRASERT and. KASSIR
[4]; ErGUVEN [5] and SELVADURAI, SINGH and VRBIK [6]. In the present
study the exact solution, within the assumption of classical elasticity theory,
for axisymmetric torsional displacement and stresses in a non-homogeneous
orthotropic half-space subjected to concentrated internal torque is obtained
through the application of Hankel integral transform techniques.

2. BASIC EQUATIONS

Consider an orthotropic non-homogeneous half-space, with a cylindrical
polar coordinate system (r,#,z) chosen such that the z-axis is normal to
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the surface. The stress-displacement relations for axisymmetrical torsion
problem are

(2.1) orp = Go(2) (——- - 3) ,  Og = Gz(Z)% .

T

where 0,9 and oy, are the stress components, v is the displacement and
G.(2),G.(z) are the shear moduli which vary continuously with depth ac-
cording to the following functional forms:

(2.2) G.(2) = Goe®*, G, = 5%G,(2)
or
(2.2) G.(2) = Go(l + m2)*, Gr(z) = s2G,(2), m>0.

In Eqs.(2.2) @ = B8 = 0 represents a homogeneous orthotropic solid; a > 0
or 3 > 0 represents a situation where shear moduli increase nonlinearly with
depth; o < 0 and § < 0 represents a situation where shear moduli decrease
with depth and & = 1 corresponds to an elastic medium with linearly in-
creasing shear moduli. The constant s is 2 measure of orthotropy and s = 1
represents an isotropic solid. It is evident that Eqs. (2.2) could represent a
variety of practical situations for non-homogenity. For most applications in
geomechanics the shear moduli of natural soil deposits increase with depth
due to the increase in effective overburden pressure and degree of consolida-
tion. In addition, the homogeneous condition could be justified in the radial
direction. Under these assumptions shear moduli ¢, and (G, are functions
of the z-coordinate only. It is assumed above that the ratio of the shear
moduli G, and G, is independent of z. With these assumptions the prob-
lem is solved by means of integral transform and exact analytical solution
or approximate solution, respectively, are obtained.
Substituting Eq.(2.1) into equation of equilibrium

30?9 day,

ar 0z _
and considering the appropriate variation of shear modulus as given by
Eq.(2.2) or (2.2'), one obtains

(2.3) + ‘71*19 =0

v 18v v 8%y
2N R Bt =
(2.4) (8r2+r31' r2 )+ﬁ +3 2= 0
v 10v v am Ov 0%
2. 20 1 Ov_ v} om Ov 0%
(2.5) # (31‘2 r Or ?‘2) 14+ mz8z +322 0
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for exponential and power variations of the shear moduli, respectively.
The boundary and continuity (or discontinuity} conditions are:

(2.6) o.0(r,0) = 0,
2.7) fotr 2] = o,
(2.8) [lazg(r,z’)l] = miiinB[Tﬁ(r—a)/QHﬁ],

where it is assumed that the twisting moment T acts in the interior of a
half-space on the plane z = 2/, §(r — a) is Dirac’s delta function and the
symbol ﬂ i] denotes the jump of the function, defined as follows

(2.9) el

The solution of Eqs.(2. 4) and {2.5) with the conditions (2.6) to (2.8) could be
obtained through the application of Hankel integral transforms, with respect
to 7, defined as

= Im A+ 8) - (- A)).

+o00
(2.10) (@)= [ o) (rerar,
0
where J, is the Bessel function of the first kind and order v.
The transform of a gradient, with respect to r, is given by

611(1')

(2.11) — = i(rE)rdr = —£0°(€) .

0
The form of equations indicates that the first-order Hankel transform is the
proper one to use on both v and oy,.
Applying the Hankel transforms, Eqs.(2.4) to (2.8) become

2.12 92! el 2.2,1 _
(2.12) 3 +ﬂ - sy =

! am Bv 9
(2.13) 92?2 +1+mz dz —Es

ik
(2.14) 5| =0
2=0
(2.15) o] =0, \
! T

(2.16) G, {“a“;ﬂ T YAk
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Applying the foreg;omg transforms to Eqs.(2. 1), ‘we obtain

@17)  =-Giant,  oh =G

where the superscripts 2 and 1 denote the second- a,nd first-order Hankel
transforms of 0,4 and oy,, respectively. '

3. SOLUTION

The solutions of Eqs(212) and (2.13) are _
v, z) = e PHA(E)e* + B(£)e™], 0<2< 7,

(3.1) L
V(€2 = e B2, 227

(6 2) = (m AP DO K+ D)+ BOLIm ™ + )6,
(3.2) 0z,
v1(€,2) = (m™! + z)”F(f)Kﬁ[(m_l —i-.z)fs], 22> 7,

where
(3.3) o= (B,
(3.4) e 2p = lea '

and I, and K, denote the modified Bessel functions of the first and second
kind of order p, respectively. The functions A(£), B(£), C(€), D(€), E(¢)
and F{{) are obtained from the boundary condltlons (2 14) to (2.16) and
assume the forms: : : :

Te? [:? /2 Ee—z e

B = siigy <

65 4@ = BOZER.
C&) = A(§)+B(E)e™",
T(m™ + 2)

E(§) = EE[(m™ + 2)es]

4G () (m™1 4 )P

(3:6) be) = E(g)if:l((?sl/r:l))ﬁ

RO = DO+ BOTEI.
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Equations (2.17),(3.1) or (3.2) and (3.5)0r (3.6) yield the Hankel transforms
of the displacement and stresses.

For the medium with G.(2) = Goe??

Blz—2')/ .C — (6/2) e‘c(z+2') e-Ciz-—z']
e L [c T6/2) - + . ,

”l(faz): S_ﬁ'(%

, e—clz—z2'|
(3.7)03, (&, 2) =~ fﬂ”)”f[(cw(ﬂ/z)) T (B (812D }

r6(£1z)'_— H 5(2 )22 [C—(ﬁ/2)e—°(Z+Z’) e—clz—z’l]’

c+(B/2) ¢ + c
z2> 0,

where 6§ = 1if 2> 2’ and § = —1if z < #".
For the medium with G,(z) = Go(1 + mz)*

T of2
62 = T Gi;‘j) K, (Eu') K p(€u)Vaw
% Ep“l(fuo) + Ep(fu) 0<2z< 7,
Ep_1(Euo) + Ep(&u) zz 2,
T : af?
(38) oh6?) = —gm (1oms)  EKEW)Kpa(En)Vad
y { Ep_1(Eug) — Ep_q(£u) 0<z2<?,
E,_1(Eug) + Ep(Euy |7 2> 7,
of2
Aer) = g (1) ER (e Ky(En)Vond
o | Erp-1(§uo) + Ep(En) 0<z<7,
Ey-1(8uo) + Ep(w') |’ z> 2,

where
(3.8)  u=(14+mz)s/m, u' = {1+ mz)s/m, ug = s/m.

and quantities E,(z) represent the ratios of the [, and K, Bessel functions

I, '
(3.8”) Eﬂ(a:) = rn((ma‘:l)' , n=p—1,p, x=~{u Eu, Eu .
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The inverse Hankel transforms for (3.7) may be obtained in an analytical
closed form according to the integrals

o0 gr+t ~ — |ﬁ'| p+1/2 . ,
Ofm.._gmz..+__ﬁ,ze Ve 1) de = |5 (L) Kpwaalim),
(3'9)00

1
and the known property of the Bessel function
Jo(€r) = (2/&r) 1 (Er)y = Jo(€r),
where (in our notation)

RE=Z%4¢%, P =p[2s, Z=s(z+2) or Z=slz—2|.

e~ IVERD? I (re) dE = . ;" (e-lﬁ'lz - e*lﬁ’lR) ,

The exact solutions are:

2

2 ((Iﬂ’l - ﬂ')e"”""" - ('ﬂ" - ﬁ'ﬁ) e_mm)] ’

(310)  op(r,z)= - 3T" ﬁ"dz (1+|ﬂ’|&+ ﬁ’sz)

i=1

(- 1)231?,3(1 +|8'|R; )} R

_ _BTS Bz 2 2 i . E sz? ~18'|R:
org(r,2) = B T 235 H'IﬁIR‘-IP?.’6 i)€

=

+%( (Iﬁ'|+ )—ﬂ’) C

+orz (191 = B~ (191 g 22) e ime )|

for the medium with G,(2) = Goe??, and
(3.11) R¥I=z224+2, z=sz+(-1)7), (i=1,2), @ =4/2s.
Note that a4,(r,0) = 0 and that the conditions

o0 - f
(3.12) 2#]ng(r,z)r2dr = { T, for z> 4,
0

0 for 2z <2,




OGN THE SOLUTION OF A CONCENTRATED TORQUE PROBLEM 183

are identically satisfied for any values of z and g since, for the analytic
function in expression (3.10)2 the improper integral in Eq.(3.12) is equal
4/8 for z > 2/ and z — z' + 0, or 0 for 2 < 2’ and 2z — 2’ — 0. Equations
(3.12) are the equilibrium conditions and we may expect that the resultant
stress og, acting on the cross-section for arbitrary z > 0 should be equivalent
to a concentrated torque for z > 2’ and to zero for z < z'. Thus Eqs.(3.12)
confirm the validity of the derived expressions. The asymptotic behaviour
of the solution (3.10); is as follows: v(2) = 0[(z — 2)~2¢=#'#] for B < 0 and
v(2) = 0[(z — 2')~%e~*F} for B > 0, and o(z) = 0[(z— ')~} for B = 0, as
z — oo, for fixed r > 0. For all bounded values of 8 and 2’ the regularity
conditions, v,04,,0,0 — 0 for » > 0, z —» oo, are satisfied. It is evident
that » ~ (1/72)e~18I"/25 for all 5 and large 7, so that the energy crossing the
sphere at infinity is zero.

The inverse Hankel transforms of equations (3.8) yield integration which
is adjusted by adding and substracting the terms, respectively

17 —Elm T
5!56 ¢l ||..]1(€'r) dE = 2—ng s
17 ., . 37|z
(3.13) 3 [Eetlnena = S,
0
1 7§2E—EIZ.-IJ2(&) de¢ = 3
2 J 2RY’

with the multiplier § = sign(z — 2’) for the stress ¢, and z, where z; and
R; (i=1,2) are defined by Eqs.(3.11).
After simplification, the inverse Hankel transforms of Eq.(3.8) reduce to

af?
(3.14)  w(r,z)= SHG?;(Z)S G::Z) [R% + RLg
fo o
+ [€[r© -] nien e+ [e[Pe) - 1] ngen) de
0 0

3 [ [ et en de
£o

k=1

+nkbk(z,z')75-“+1e-f”‘1'J1(5r) ||,
/ |



184 B. ROGOWSKI1

(3.14)

[cont.]

T (1+mz)°‘/2 [37',21 3rzg

90:(2) = ~ g \ T3z By ¥ R’}

o o
¥ Oj & [Fa(e) - e8| Tu(er) de + 6 oj € [Fu(e) - e8] nu(er) dg

3 [onte, ) [rreenaiien) dg
o

k=1

+8nidi(z, 2 75-“%-6'“1.11(5?) d¢ ” ,

o
Ts {1+mz\*/?[3r2 372
w2 =—sp\Time) |BTH

o o
+ 0f £ [Fi(6) - e8] Ia(er) e + ﬁj & [Fr(e) - e~tinl] () de

+§ [ak(z,Z')fE_“?E"‘f”Jz(E?‘) €
éo

k=1

+ebi(2, ) 7£—k+2e—£lz1lJ2(§,-) d¢ ]] ,
&o

for the medium with G,{z) = Go(1 + mz)*; here & is a finite value of £,
and g = 1 for 0 < z < 2/, and g = (—1)* for z > 2. 5:

The functions F;(£) (i = 1,2,3,4) denote the following combinations of ':
Bessel functions: '

ROV _ e oo Tl | Fols)
[Fz(ﬁ)} = 2V () I(p_l(fu)]’

(3.15) F5(8) QfM[ I(&u) Kp(éu') ] ’ 0z,

L(Eu') Kp(£u) 222,

[ Kyl ha(En) | 0<z< 7,
QEM[ Kp_1(&u) L(éu') ] o>

Fy(£)

and ay, by, ck, d, are coefficients of the asymptotic expansions
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Zak(z,z’)fpk'r 2201
k=1
F3(€)e€|21l -1 Z "kak(z-rz’)g—k ] z2>0,
(3.15') k=1
)
F(e)e2 —1 = Y ez 2)*, 220,
) k=1

Z mdi(z,2NEF, 0<2<d, 2> 4.

F1(§)6522 -1

Fy(&)ebll — 1

The following notations have been introduced here:

n o o n-—1 -1 (_1_ l)
ai1(z,2") = Tug +-—— u'+u s
n o (=1 (1—-1)(n-1)( )
w(%2) = “pa 32uq v
(5—1)2 (1—1)(1-9)( L1 )
64 u"u. 128 w2 ou2)’
I-1/1 1
ne) = 5 (i)
N _ (@=D{-9) (_1_ _1_) (=11
ba(2,7) = 128 PR 64 uw’
(3.15")
al52) = n-1 n-1 [—1
1 ¥ - 4’u.g S Su’ ?
N (n—l)z_n-l(n—l I—l)
co(z,7) = 32u? 32uo % t P
di(z) = -2 1 3;1. |
n o (n— 1)(n"—9) (I-D(r-1)  (-1)(-9)
dy(2,7) = 128%2 Gluw T 12807

I = (1-a), n=(14a)l.

where 4, %' and ug are defined by Eqs.(3.8').
The asymptotic behaviour of the solution (3.14) is as follows v(z) =
0[(z — 2)73(1 + m2)~*/2), 04,(2) = 0[(2 - 2')"*(1 + mz)®/?| as z — o0, for
fixed 7 > 0.

The regularity condition requires that —6 < a < 8 and the range of
applicability of the solution (3.14) is restricted to these values of . However,
when compared with the existing analytical solutions of this problem (see,
for example, [3], [5]), this restriction on the parameter o is weaker. In
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addition, v ~ 1/r? for large r, so that the energy crossing the cylinder at
infinity is zero.

It is noted that the integrals appearing in Eqs.(3.14) are again well be-
haved and bounded, and create no difficulties when a numerical integration
procedure is performed over the finite range 0 < £ < & and infinite range
£ < € < oco. For a prescribed large value of £ the integrands in the range
0 < & < & are of order O[e"fD"‘"'{é/z] or 0[e_f°|z"353/2], respectively if £ = &,
whereas the integrals in the range £ < £ < 0o represent remainders with
a small contribution to the total solution. However, on the surface z = 2/
the first integral in the range & < £ < oo, for displacement, becomes in-
creasingly large in the neighbourhood of the point loading and, in fact, this
integral will be shown to contain the singularity which occurs in the region
near the point of the applied concentrated load. For & = 0 or m — 0 the
integrals or the coefficients ag, by, . . . vanish (homogeneous solid). The stress
and displacement equations derived can be readily reduced to: (i) an exter-
nal concentrated torque, 2’ = 0, (ii) an orthotropic homogeneous material
a = f# =0, (iii} an isotropic non-homogeneous material, s = 1, {iv) an
isotropic homogeneous material, s =1 and a = 8 = 0.
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