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ON THE MODELLING OF LASER THERMAL FRACTURING
OF HARD ROCK

AA. YEVTUSHENKO (LVIV), S.J. MATYSIAK (WARSZAWA)
and E.G. IVANYK (LVIV)

The paper deals with the nonstationary problem of elastic half-space heated by laser beam.
On the basis of the uncoupled linear thermoelasticity, the distribution of temperature and
stresses in the body is obtained. By using the theory of brittle fracture given by Griffith and
McClintock and Walsh, the fracture trajectories are presented for three kinds of rocks: granites
quartzites and gabbros for a given radius of the heating region and its intensity.

1. INTRODUCTION

The laser heating of materials is applied in many processes, for instance in
thermal fracturing of hard rock [1]. The action of a laser ray is described by a
local thermal source, which can be determined by distribution of the heat flow.
In practice, two cases of thermal source distribution are investigated: a normal
(Gaussian) distribution and a uniform distribution, and as object of heating is
taken a half-space. It is shown [2] that the normal distribution of thermal source
more accurately describes the action of a laser ray. The problem of finding the
temperature field in semi-infinite isotropic body with surface heating by laser
beam in the case of the Gaussian heat flow intensity is analyzed in [3].

In this paper the nonstationary temperature distribution and quasi-static
stress fields in the half-space heated by normal thermal flux distributed on a
circle on its surface is found. It is shown that three zones of tensile, compressive
and shearing stresses can be assumed inside the body. The thermoelastic state of
stresses can initiate the brittle fracture of material, which may be described by
the fracture theory given by GRIFFITH [4] as well as MCCLINTOCK and WALSH
[5]. The fracture paths are obtained for three different types of rocks. The ob-
tained results allow for the optimization of thermal fracturing processes of the
rocks.
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2. TEMPERATURE FIELD

The formulation of the axisymmetric problem for laser heating of a semi-
infinite body takes the form [6]

#7107 #T _om
00> 000 022 9Fo’
2.2) T(o,Z,0) =0, 0<p<o0, 0<Z<oo;

(2.1)
(
e oT
(

0<p<o0, 0<Z<o0, Fo>0

23) 5 -BiT= —Ae @ H(Fo), 0>0, Z=0;
2.4) T(o0, Z,Fo) = T(g, 00,Fo) = 0, Fo > 0;
where
r z kt . ha qa
(25) Q——g, Z—E, FO—;, BI—E, A—E,

and T' is temperature, (r,z) denotes the cylindrical coordinates of the system
with the origin at the centre of heating, a is the radius of heated circle, ¢ denotes
time, ¢ is the maximum density of thermal flux and H(-) denotes the Heaviside
function. The constants K, k and h denote the coeficients of thermal conductiv-
ity, thermal diffusivity and surface temperature conductivity, respectively. The
physical significance of boundary condition (2.3) is that the boundary surface
dissipates heat by convection according to Newton’s law of cooling.

The foregoing equations may be solved by using the integral transform tech-
nique [7]. Applying the Hankel transform with respect to radial coordinate o, we
obtain

PT . oT
(2.6) o T = =3,
where
o0
(2.7) T(&,2,Fo) = [ oT(0,2,F0)Jo(€0) do.

0

By transforming the conditions (2.2), (2.3) and (2.4) we have:

(2.8) T(¢,2,0) = 0;
(2.9) T(¢,00,Fo) = 0;
(2.10) o =—Ap(¢)+BiT  when Z=0.

0Z
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The function ¢(£) in Eq. (2.10) is given by [8]:
oo

(2.11) o(&) = [ 0™ Bo(¢o)do = 1/2¢¢/%
0

By using now the Fourier integral transform with a general trigonometric
kernel with respect to variable Z, from Egs. (2.6), (2.8)—(2.10) it follows that

1/2
e Lo = {2} 4e9,  Fo>o,
(2.13) T(£,¢,0) = 0,
where
(2.14) T(e,¢.Fo) = { - } / (6,2, Fo)N(Z,¢) dZ
0
(2.15) N(Z,¢) = (cos({Z) + Bisin(¢Z).

Solution of the ordinary differential equation (2.12) with condition (2.13) can be
written in the form

(2.16) T(€,¢, Fo) = Ap(€)®o (£, ¢, Fo),

where

(2.17) Bo(¢, ¢, Fo) = {3}1/2 ¢ [1 - e-(<2+52>F°].
»53 x 2+ &2

Applying the inverse Fourier and Hankel transforms:

& 1/2 it
T(¢,2,70) = {2} /C2 )F(e, ¢, Fo) de,
(2.18) .
T(e,2,Fo0) = [ €T(¢,2,Fo)hu(ce) de,
0

to the solution (2.14), we obtain the function

(219) T(6, 2,F0) = 4 [ €0(6)80(€, 2,Fo)Io(€) de,
0
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where

1| e¢2
(2.20) P0(&, Z,Fo) = 3 lBH_Eerfc( i —¢

\/1?6)

etZ £ A

+ m—erfc | —=
Birf (z\/p—o

. BiZ
= B]?;e & e(Bi*~E*)Fogrfe (
l —

+ 5\/1?—0)]

Z
+ B'\/I%),
2vFo
and erfc(-) = 1—erf(-), erf(-) is the error function, and J,(-) is the Bessel function

of the first kind and order n.
We note that at £ = Bi from Eq. (2.20) it follows that

- Bi\/i%).

(2.21) &y (Bi, Z,Fo) = 2 5 B‘Zerfc<

Z
4Bi 2v/Fo

The function $y(¢, Z,Fo) given by (2.20) in absence of the convective cooling,
Bi = 0, is reduced to the form [9]

(222) (¢, Z,Fo0) = 5 5 [ Zerfc( —6\/1*‘_0)

Z
2v/Fo

— et Zerfc <25F—B— + §\/FTO)].

The stationary temperature at the centre of the heated region o = 0, Fo — oo is
determined on the basis of Egs. (2.11), (2.19) and (2.20) by the relation

Aym  ABi T e €/4

2.2 Tyax (0,0, 00) = - ,
(25 ax(0,0,00) = = 2 | Bit¢

de .

From Eq. (2.23) at Bi = 0 we obtain the well-known value of maximum tem-
perature in the steady state without the convective exchange [10],

(2.24) Trmax(0,0,00) = (v/7/2) A = 0.88624.

3. THERMAL STRESSES

Consider now an isotropic thermoelastic half-space free from force loading on
its boundary plane. The stresses in the semi-infite body are caused only by the
action of the laser beam described in Sec. 2. It is well known that the solution
of the uncoupled thermoelastic equations (in the case in which body forces are
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neglected) may be expressed as a sum of the particular solution of the nonho-
mogeneous system of equations for displacements (with the temperature field)
and the general solution of the homogeneous system (without the temperature)
(11, 12]. The particular solution can be found by introducing the thermoelastic
displacement potential defined by the relations [11]:

10y 1 oy
1) 2 0F (1) o = 2
-4 U= a8 Ve T o9z
The function % satisfies the equation

(3.2) V%) = B,a’T,
where

1+v
(3-3) By = 011 L4

and a is the coefficient of thermal expansion, v is Poisson’s ratio and T is the
temperature field obtained in Sec. 2.

The knowledge of potential ¢ leads to the stresses according to the following
relations [11]:

9? 10
o = 2 ( — v2¢), o =2 (G5 -v%),

0 9o
89 0%y 2 9y
 _ 2 1 _ 2
a3 (E)Z? v d)) FRE g 0007’

where p is the shear modulus.
In the case of temperature distribution given by (2.19), we obtain the potential
¥ in the form

(35) ¥(e,2,Fo) = 4: [ €(O)1(¢, 2, Fo)Jn(6e) d
0
where function @, is defined by
1 ; zZ Bi
(36) ¢1(€,Z, FO) = m{(Bl Fo + '2— + B12——€2> G+(§, Z, FO)

BiZ 1 Bi? - Fo —(erotfy)
- |¢Fot+ 55 §E+———§(Bi2—§2)]G (é,Z,Fo)—\/;e }

Bie Bi —{2)F Z 5
~ B2 _52 e(Bi %erfc \/FT+B1\/FTO ,

(3.7) Gi(f,Z,Fo)=%[e_EZerfc(2\/% §Vi“—5>:l:erfc( \/__+§\/PTO>]
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By substituting the potential ¢ presented by (3.5) into Eqs. (3.4) we arrive
at the following stresses for Z > 0:

o) =C / #(€)1(¢, Z,Fo) [5 1(60) — €0 €0) | d€ — 2uBLT,

x 2
7 = =C [ ol©)81(6,2, o) si(ee) de - 2uBeT,
0

(3.8)
o) = ¢ / (€)1 (€, Z,Fo)¢® Jo(€e) dé
o) =-C 7 (€)®2(€, Z,Fo)E2 1 (£ ) dE .
]
Here
(3.9)  &y(¢,Z,Fo) = iqsl(g Z,Fo)
8 B—Pl——e{ (§2Fo - B;Z + Bi?i_z 52) G™* (¢, Z,Fo)
<§B1F0 + %i —~ % + %) G~ (¢, Z,Fo)
(i)
T
gizefi; (Bi*—¢*)Foor e (2\2_0 o Bi\/F_o) ;
(3.10) C = 2uB:A

It can be observed that for Z = 0 it follows that azz # 0 and 0(1) # 0. In order
to satisfy the conditions of the load-free boundary plane, the state of stresses
og), ag), aw, ag},) should be completed by a state agi), ag), 053’, a((,ze) in the
elastic half-space such that the following boundary conditions are satisfied for
Z=0:

()+0'(2) 0 for Z=0.

TZ

(3.11) oM + 53 =,
(2

The stresses 0;;°, 1, j, € {,7,0} can be determined by means of the Love function
L [12] which satisfies the biharmonic equation and boundary conditions (3.11).
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Thus, we obtain

312)  L(eZFo) = Z—ca® [ so(f)e-fZ{qsl(a,o,Fo)

0

N (2” s Ly z) [@3(¢,0, Fo) + e¢1(§,0,Fo>]}Jo(€@) %

The stresses corresponding to function L given by (3.12) will be found by the
well-known formulae [12] in the form

@ =-cf ¢<£)é2e—fz{[(1 ~ £2)E21(€,0,Fo)
0

+(2 — £2)P2(¢,0,Fo)] Jo(§e) + [(2v — 1+ £2)E1(¢, 0, Fo)

+(2v — 2+ £2)B,(¢, 0, Fo)) gfg ) }d§ ,

o0

oy ==C [ (©) Ze‘fz{[zuaél(e,o,b‘o) +2w@2(€,0,F0)] Jo(€0)
0

(313) [0~ 1+E2)E01(6,0,F0) + (20 — 2+ E2)8a(¢, 0, F)] T }dg,

oo

o = =C [ PO [(1+€2)601(6,0, Fo)

0
+ £25(€,0,Fo)| Jo(€0) d€ ,

o0
o = =C [ p()6*e¢ [2281(¢,0,Fo)
0

— (1 - £2)@3(¢,0,Fo)| J1(€0) d
The final solution describing the state of stresses due to the laser heating of
a half-space is obtained by superposing af ), ij € {z,m,6} given by (3.8) and
agj), ij € {z,7,0} given by (3.13). After appropriate calculations we arrive at

the following relations:
(3.14) ai; =Co;,

where

ij»

(3.15) o5 = / @(€)Sij (€, 0, Fo) d§ — T"eij ;
0
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2
Srr(€, 0, 2, Fo) = 1(¢, Z, Fo) [%Jl(ﬁg) - €3Jo(€0)]

- sze‘fz{[(l —£2)€81(€,0,Fo) + (2 — £Z)®5(¢,0,Fo)] Jo(£o)

)

+ (20 — 1+ E2)EB1(€,0,Fo) + (2 — 2 + £2)By(€, 0, Fo)] 262 lg") }

2
Soo(¢, 0, Z,Fo) = —&1(¢, Z, Fo)%Jl(ﬁe) = éze“z{ [2v681(¢,0, Fo)
(3.16) + 20@s(€,0,Fo)| Jo(¢e) — [(2v — 1+ £2)€@1 (¢, 0, Fo)

J;
+ (20 - 24 £2)8,(¢,0,Fo)| %}
8::(6,0,Z,Fo) = {£81(¢, Z,Fo) — e~¢7 (1 + £2)£84 (£, 0, Fo)
+ £2%5(¢,0, Fo)| }¢2Jo(¢o),
5::(¢, 0, 2,Fo) = { =5 (¢, Z,Fo) + e~¢%[~£2 2, (¢,0, Fo)

+ (1 - £2)®5(¢,0,Fo)| }e2n (€o);

T

A

I if d=J=¢r ar O
€ij = 0

B i=j=2 0f d=p =78

and where T' denotes the temperature defined by (2.19).

4. THERMAL FRACTURE CRITERIA

The action of the laser beam described by boundary conditions (2.2) - (2.4)
results in the thermal stresses determined in Sec.3. The stresses can produce
an initiation and growth of cracks in the body leading to the fracture. For the
description of the phenomena, the theory of brittle fracture given by GRIFFITH
(4] and McCLINTOCK and WALSH [5] will be applied.

The normal stresses o, acting on the boundary of the assumed crack are
determined by the following equation [13]:

On = % [(o1 + 03) + (01 — 03) cos(26)],
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where 07 and o3 denote the maximal and minimal principal stresses (tensile
stresses are treated as positive), 6; = 0.5tan~1(1/f) denotes the angle of crack
orientation measured anticlockwise from the direction of o3, and f is the coeffi-
cient of surface friction.

If the normal stresses o, on the crack surface lead to its opening (o, < 0)
then the brittle fracture of the body can be determined by using the Griffith and
the modified GRIFFITH criteria [4]. According to the first criterion, the fracture
process will be started at a given point of the body if

(4.1) oy =o0r,
provided that 307 + 03 > 0 and where o7 denotes the tensile strength of the
material.

In this case the growth of cracks occurs in the plane normal to the direction
of principal stresses o;.

If the state of stresses satisfies the condition 307 + o3 < 0, the initiation of
fracture will be possible under the condition of cracking

(4.2) —(o1 + 03) 7 (01 — 03)% = 807
In this case the crack growth occurs in the plane inclined by angle 6, to the
direction of action of the maximal principal stress o;, where angle 0, satisfies
the equation
cos(20) = 0.5(0y + 03) (o1 — 03).
The fracture caused by compresive stresses o, > 0 will be initiated under the
following condition [5]:

(43) a-ar|(Virr+s)/ (Vier-1)| =,

where o, denotes the compressive strength of material. The cracking occurs in
the direction of action of the maximal principal stresses.

5. NUMERICAL ANALYSIS

Figure 1 shows the processes of variation of dimensionless temperature 7
defined by (3.17) at points of surface Z = 0 for Bi = 0.1 and ¢ = 0; 1; 2. For points
lying more closely to the heated region, the process is shorter. For Fo = 1 the
temperature at the centre ¢ = 0 is equal to 75%, and at the point p = 2 it is equal
to 50% of the stationary value of temperature given by (2.23). The large gradient
of temperature becomes stabilized close to the moment of heating (for Fo ~ 0.1).
The values of temperature gradients decrease in the vicinity of the heated region
and at the stationary state. Thus, the values of T*(p = 0)/T*(¢ = 2) at times
Fo = 0.1; 0.5; 1;2 are equal to 36.2; 17.8; 13.3; 10.9.
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It can be seen that the value Fo = 10 corresponds to the stationary state given
by (2.23) at the moment of heating for Bi = 0.1. For the considered materials
k ~ 10°m?/s, so for a = 0.1pm and @ = 1pm the characteristic times of the
process are 0.1 ms or 10 ms.

The distributions of temperature T* along lines o = 0, p = 1 and p = 2 for
Bi = 0.1, Fo = 1 are shown on Fig.2. The temperature decreases fast with the
growth of depth Z, and for Z > 1 it is almost equal to zero.

It should to be emphasized that the accuracy of temperature determination
depends on the conductivity h of surface temperature. In the paper [10] deter-
mining the surface temperature, the relation between h and K is given, and the
evaluation of h ~ 0.02K/a is presented under the assumption that a convec-
tive heat exchange reduces the maximal temperature of the body by no more
than 10%.

The variation of maximal value of 07 = 01/C and minimal value of 0§ = 03/C
of dimensionless principal stresses with respect to depth along lines p = 0; 1; 2
for Fo = 1, Bi = 0.1, f = 0.9 is shown in Fig.3 and Fig. 4, respectively. The
principal stresses o] are positive for Z > 0 and they reach the maximal value
near the boundary surface of the half-space for Z =~ 2.4. The stresses o} are
negative for 0 < Z < 1.8 and they almost vanish for Z > 1.8.

By substituting values of of and o3 into the criterial equations (4.1) - (4.3),
three zones of the state of stresses produced by laser heating can be established
inregion 0 < p<3,0< Z <5 for Bi=0.1, Fo = 0.1, see Fig. 5.
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In the region 0 < Z < 0.4 marked by 3 and situated directly below the heated
region, the stress state is suitable for applying the McClintock - Walsh condition
given by (4.3) and to determine the compresional fracture. The zone marked
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by 2, in which ¢, < 0 and 307 + 03 < 0, the modified Griffith criterion (4.2)
should be applied. The mean depth of Zone 2 of shear stresses is not greater
than Z = 0.5. The region of tensile stresses is situated below and is marked by
1. Here the Griffith criterion (4.1) should be used.

To carry out the numerical experiments, three kinds of rocks have been chosen:
granites, quartzites, gabbros. The mechanical and thermophysical properties of
the materials given by [13, 14] are presented in Table 1. In the table, the values of
constans A defined by (2.5) and C defined by (2.10) are shown for ¢ = 108 W/m?,
a = 0.1 mm. For the given materials, the compressive strength o. considerably
exceeds the tensile strength or. Thus, cracking of the rocks can occur in Zone
1, see Fig.5, where according to (4.1), the maximal principal stresses o, are
equal to the tensile strength or. Bearing in mind equation (4.1) written in the
dimensionless form

(5.1) ot =07/C,

the values of o and material constants of the considered rocks are presented in
Table 1.

The set of points of the plane pZ, where the Griffith criterion is satisfied can
be illustrated by a continuous curve of equal stresses (isolines). The isolines of
the value of 0.002 for quartzites, of the value of 0.005 for granites and of the value
of 0.011 for gabbro, are shown in Fig.6. Since the crack growth in Zone 1 can
be generated in the direction normal to the direction of action of the maximal
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Table 1.

Parameters granite | quartzite | gabbro
Uniaxial tensile strength, o7 [MPa] 9.0 13.5 16.0
Uniaxial compressive strength, oc [MPa] 205 190 162
Shear modulus, p [GPa) 28 36 34
Poisson’s ratio, v 0.23 0.16 0.24
Thermal conductivity, K [W/(mK)] 4.07 4.21 3.67
Thermal diffusivity, k& x 107° [m?/s] 0.505 | 2.467 | 0.458
Coefficient of linear thermal expansion o x 1078 [K™!] | 7.7 24.2 4.7
A x 10* [K] 0.246 | 0.237 | 0.272
C [GPa) 1.69 5.70 1.42
(or/C) x 1073 5.319 | 2.367 | 11.280

459

principal stresses, the isolines shown are normal to the directon of o; at every
point and they represent the fracture trajectories. Moreover, because values of
the principal stress o; increase with the growth of Z, the isolines determine a
limiting depth, at which the thermal fracture is possible.
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